• 제목/요약/키워드: Breathing Detection

검색결과 46건 처리시간 0.025초

PVDF 필름을 이용한 기관음 검출 및 수면무호흡 판정 알고리즘 수립 (Detection of Tracheal Sounds using PVDF Film and Algorithm Establishment for Sleep Apnea Determination)

  • 임재중;리웅;채수민
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권2호
    • /
    • pp.119-129
    • /
    • 2023
  • 수면 무호흡증은 고혈압, 뇌졸중, 심근경색, 우울증 및 인지기능 장애 등 다양한 2차 질환을 일으키며 심혈관 및 뇌혈관 질환의 발생 원인이 되기에 수면 무호흡의 조기 발견 및 지속적인 관리가 절실히 필요하다. 본 연구에서는 수면 중 호흡을 모니터링하기 위해 목의 기관 부위에서 호흡에 의한 미세한 진동을 검출할 수 있는 PVDF 필름 진동 센서를 이용하여 정상호흡과 수면 무호흡을 판단하는 웨어러블 디바이스를 개발하였다. 검출된 호흡음 데이터를 기반으로 호흡수, 무호흡 등의 변수들을 추출하였고 잡음 제거 알고리즘을 수립하여 잡음 신호가 있을 시에도 영향을 최소화하는 방법을 적용하였다. 또한 변동 문턱치 알고리즘을 수립하여 불규칙적인 호흡 패턴에서도 분석이 가능함을 확인하였다. 그 결과 분당 호흡수의 정확도는 98.7%이고 무호흡 횟수와 무호흡 지속 시간에 대한 개발기기와 수면다원검사의 결과를 비교한 결과 무호흡 횟수 측정 정확도는 92.6%, 무호흡 지속 시간의 정확도는 94.0%임을 확인하였다. 본 연구의 결과는 일상생활 중 가정에서 간편하고 정확하게 수면 정보를 모니터링하고 치료 경과를 확인할 수 있는 웨어러블 디바이스의 제품화로 이어져 수면장애의 관리에 큰 도움이 될 것이다.

수면관련 호흡장애에서의 신경정신과적 증상 (Neuropsychiatric Dysfunction in Sleep-Related Breathing Disorders)

  • 윤인영
    • 수면정신생리
    • /
    • 제4권2호
    • /
    • pp.140-146
    • /
    • 1997
  • Sleep-related breathing disorders, especially sleep apnea syndrome are complicated by neuropsychiatric dysfunction such as excessive daytime sleepiness, cognitive dysfunction, and depression. As the determinants of daytime sleepiness, sleep fragmentation is more influential than nocturnal hypoxia. Daytime sleepiness can be improved by continuous positive airway pressure (CPAP) or surgery in up to 95% of the treated subjects. Both sleepiness and nocturnal hypoxia would cause cognitive dysfunction. While impairments in attention and verbal memory are more related with sleepiness and prominent in mild to moderate sleep apnea syndrome (SAS), impairments in general intellectual function and executive function are more related with nocturnal hypoxia and prominent in severe SAS. Several cognitive deficits related with nocturnal hypoxia may be irreversible despite CPAP or surgical treatments. So, early detection and early appropriate treatment of SAS would prevent sleepiness and cognitive deterioration.

  • PDF

Advanced Methods in Dynamic Contrast Enhanced Arterial Phase Imaging of the Liver

  • Kim, Yoon-Chul
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권1호
    • /
    • pp.1-16
    • /
    • 2019
  • Dynamic contrast enhanced (DCE) magnetic resonance (MR) imaging plays an important role in non-invasive detection and characterization of primary and metastatic lesions in the liver. Recently, efforts have been made to improve spatial and temporal resolution of DCE liver MRI for arterial phase imaging. Review of recent publications related to arterial phase imaging of the liver indicates that there exist primarily two approaches: breath-hold and free-breathing. For breath-hold imaging, acquiring multiple arterial phase images in a breath-hold is the preferred approach over conventional single-phase imaging. For free-breathing imaging, a combination of three-dimensional (3D) stack-of-stars golden-angle sampling and compressed sensing parallel imaging reconstruction is one of emerging techniques. Self-gating can be used to decrease respiratory motion artifact. This article introduces recent MRI technologies relevant to hepatic arterial phase imaging, including differential subsampling with Cartesian ordering (DISCO), golden-angle radial sparse parallel (GRASP), and X-D GRASP. This article also describes techniques related to dynamic 3D image reconstruction of the liver from golden-angle stack-of-stars data.

Crack Detection, Localization and Estimation of the Depth In a Turbo Rotor

  • Park, Rai-Wung
    • Journal of Mechanical Science and Technology
    • /
    • 제14권7호
    • /
    • pp.722-729
    • /
    • 2000
  • The goal of this paper is to describe an advanced method of a crack detection: a new way to localize position and to estimate depth of a crack on rotating shaft. As a first step, the shaft is physically modelled with a finite element method and the dynamic mathematical model is derived using the Hamilton principle; thus, the system is represented by various subsystems. The equations of motion of the shaft with a crack are established by adapting the local stiffness change through breathing and gaping from the crack to an undamaged shaft. This is the reference system for the given system. Based on a model for transient behavior induced from vibration measured at the bearings, a nonlinear state observer is designed to detect cracks on the shaft. This is the elementary NL-observer (Beo). Using the observer, an Estimator (Observer Bank) is established and arranged at the certain position on the shaft. When a crack position is localized, the procedure for estimating of the depth is engaged.

  • PDF

추정된 일회심박출량을 이용한 수면 무호흡 검출 (Sleep Apnea Detection using Estimated Stroke Volume)

  • 이정훈;이전;이효기;이경중
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권2호
    • /
    • pp.97-103
    • /
    • 2013
  • This paper proposes a new algorithm for sleep apnea detection based on stroke volume. It is very important to detect sleep apnea since it is a common and serious sleep-disordered breathing (SDB). In the previous studies, methods for sleep apnea detection using heart rate variability, airflow and blood oxygen saturation, tracheal sound have been proposed, but a method using stroke volume has not been studied. The proposed algorithm consists of detection of characteristic points in continuous blood pressure signal, estimation of stroke volume and detection of sleep apnea. To evaluate the performance of algorithm, the MIT-BIH Polysomnographic Database provided by Phsio- Net was used. As a result, the sensitivity of 85.99%, the specificity of 72.69%, and the accuracy of 84.34%, on the average were obtained. The proposed method showed comparable or higher performance compared with previous methods.

Microcomputer를 이용한 R-R Interval Analyzer 개발에 관한 연구 (1) (A Study on the Development of R-R Interval Analyzer using Microcomputer (1))

  • 이준하;최수봉
    • Journal of Yeungnam Medical Science
    • /
    • 제2권1호
    • /
    • pp.77-80
    • /
    • 1985
  • 심전도에 의한 R-R 간격변동은 자율신경계의 기능을 검사하는데 매우 유용하고 또한 교감 신경계와 부교감신경계의 가능을 정량적으로 알아낼 수 있을 것으로 사료되었다. 특히, 당뇨병질환에 있어서 자율신경계의 dysfunction현상을 고찰하는데 매우 유용할 것으로 기대된다(Fig.5 참조). 그러나 임상에 직접 적용시켜온 바로는 기립시, 심호흡시에 발생되는 근전도에 의한 잡음이 간혹 발생되는 경우가 있는데 이것은 전극접착법과 무선송신기에 의해 제거될 것으로 기대되며 향후의 과제로 남아있다.

  • PDF

A Study on a Method for Detecting Leak Holes in Respirators Using IoT Sensors

  • Woochang Shin
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.378-385
    • /
    • 2023
  • The importance of wearing respiratory protective equipment has been highlighted even more during the COVID-19 pandemic. Even if the suitability of respiratory protection has been confirmed through testing in a laboratory environment, there remains the potential for leakage points in the respirators due to improper application by the wearer, damage to the equipment, or sudden movements in real working conditions. In this paper, we propose a method to detect the occurrence of leak holes by measuring the pressure changes inside the mask according to the wearer's breathing activity by attaching an IoT sensor to a full-face respirator. We designed 9 experimental scenarios by adjusting the degree of leak holes of the respirator and the breathing cycle time, and acquired respiratory data for the wearer of the respirator accordingly. Additionally, we analyzed the respiratory data to identify the duration and pressure change range for each breath, utilizing this data to train a neural network model for detecting leak holes in the respirator. The experimental results applying the developed neural network model showed a sensitivity of 100%, specificity of 94.29%, and accuracy of 97.53%. We conclude that the effective detection of leak holes can be achieved by incorporating affordable, small-sized IoT sensors into respiratory protective equipment.

흉부음 데이터를 이용한 천식 질환 판별 (Classification of Asthma Disease Using Thoracic Data)

  • 문인섭;최형기;이철희;박기영;김종교
    • 대한음성학회지:말소리
    • /
    • 제49호
    • /
    • pp.135-144
    • /
    • 2004
  • In this paper, we make a study of classification normal from abnormal - normal, asthma through analysis of thoracic sound to take use thoracic sound detection system. Thoracic sound detection system has a function to store thoracic sound and analyze the data. The wave shape of thoracic sound is similar to noise and is systematically generated by inhalation and exhalation breathing, therefore, in this paper, to classify asthma sound in thoracic sound, we could discriminate between normal and abnormal case using level crossing rate(LCR) and spectrogram energy rate.

  • PDF

압전센서를 이용한 코골이와 심박 검출을 위한 자동 알고리즘 (Automatic Detection Algorithm for Snoring and Heart beat Using a Single Piezoelectric Sensor)

  • 에르덴바야르;박종욱;정필수;이경중
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권5호
    • /
    • pp.143-149
    • /
    • 2015
  • In this paper, we proposed a novel method for automatic detection for snoring and heart beat using a single piezoelectric sensor. For this study multi-rate signal processing technique was applied to detect snoring and heart beat from the single source signal. The sound event duration and intensity features were used to snore detection and heart beat was found by autocorrelation. The performance of the proposed method was evaluated on clinical database, which is the nocturnal piezoelectric snoring data of 30 patients that suffered obstructive sleep apnea. The method achieved sensitivity of 88.6%, specificity of 96.1% with accuracy of 95.6% for snoring and sensitivity of 94.1% and positive predictive value of 87.6% for heart beat, respectively. These results suggest that the proposed method can be a useful tool in sleep monitoring and sleep disordered breathing diagnosis.

GAF 변환을 사용한 딥 러닝 기반 단일 리드 ECG 신호에서의 수면 무호흡 감지 (Sleep apnea detection from a single-lead ECG signal with GAF transform feature-extraction through deep learning)

  • 주우;이승은;강경태
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.57-58
    • /
    • 2022
  • Sleep apnea (SA) is a common chronic sleep disorder that disrupts breathing during sleep. Clinically, the standard for diagnosing SA involves nocturnal polysomnography (PSG). However, this requires expert human intervention and considerable time, which limits the availability of SA diagnoses in public health sectors. Therefore, ECG-based methods for SA detection have been proposed to automate the PSG procedure and reduce its discomfort. We propose a preprocessing method to convert the one-dimensional time series of ECG into two-dimensional images using the Gramian Angular Field (GAF) algorithm, extract temporal features, and use a two-dimensional convolutional neural network for classification. The results of this study demonstrated that the proposed method can perform SA detection with specificity, sensitivity, accuracy, and area under the curve (AUC) of 88.89%, 81.50%, 86.11%, and 0.85, respectively. Our experimental results show that SA is successfully classified by extracting preprocessing transforms with temporal features.

  • PDF