• 제목/요약/키워드: Breast ultrasound image

검색결과 24건 처리시간 0.021초

다단계 전이 학습을 이용한 유방암 초음파 영상 분류 응용 (Proper Base-model and Optimizer Combination Improves Transfer Learning Performance for Ultrasound Breast Cancer Classification)

  • 겔란 아야나;박진형;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.655-657
    • /
    • 2021
  • 인공지능 알고리즘을 이용한 유방암의 조기진단에 관련된 연구는 최근들어 활발하게 진행되고 있으나, 사용자의 목적에 맞는 처리속도 및 정확도 등에 다양한 한계점을 보인다. 이러한 문제를 해결하기 위해, 본 논문에서는 ImageNet에서 학습된 ResNet 모델을 현미경 기반 암세포 이미지에서 활용이 가능한 다단계 전이 학습을 제안하고, 이를 다시 전이 학습하여 초음파 유방암 영상을 양성 및 악성으로 분류하는 실험을 진행하였다. 제안된 다단계 전이 학습 알고리즘은 초음파 유방암 영상을 분류하였을 때 96% 이상의 정확도를 보였으며, 향후 암 세포주 및 실시간 영상처리 등의 추가를 통해 보다 높은 활용도와 정확도를 보일 것으로 기대한다.

  • PDF

Artificial Intelligence-Based Breast Nodule Segmentation Using Multi-Scale Images and Convolutional Network

  • Quoc Tuan Hoang;Xuan Hien Pham;Anh Vu Le;Trung Thanh Bui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권3호
    • /
    • pp.678-700
    • /
    • 2023
  • Diagnosing breast diseases using ultrasound (US) images remains challenging because it is time-consuming and requires expert radiologist knowledge. As a result, the diagnostic performance is significantly biased. To assist radiologists in this process, computer-aided diagnosis (CAD) systems have been developed and used in practice. This type of system is used not only to assist radiologists in examining breast ultrasound images (BUS) but also to ensure the effectiveness of the diagnostic process. In this study, we propose a new approach for breast lesion localization and segmentation using a multi-scale pyramid of the ultrasound image of a breast organ and a convolutional semantic segmentation network. Unlike previous studies that used only a deep detection/segmentation neural network on a single breast ultrasound image, we propose to use multiple images generated from an input image at different scales for the localization and segmentation process. By combining the localization/segmentation results obtained from the input image at different scales, the system performance was enhanced compared with that of the previous studies. The experimental results with two public datasets confirmed the effectiveness of the proposed approach by producing superior localization/segmentation results compared with those obtained in previous studies.

Texture Analysis for Classifying Normal Tissue, Benign and Malignant Tumors from Breast Ultrasound Image

  • Eom, Sang-Hee;Ye, Soo-Young
    • Journal of information and communication convergence engineering
    • /
    • 제20권1호
    • /
    • pp.58-64
    • /
    • 2022
  • Breast ultrasonic reading is critical as a primary screening test for the early diagnosis of breast cancer. However, breast ultrasound examinations show significant differences in diagnosis based on the difference in image quality according to the ultrasonic equipment, experience, and proficiency of the examiner. Accordingly, studies are being actively conducted to analyze the texture characteristics of normal breast tissue, positive tumors, and malignant tumors using breast ultrasonography and to use them for computer-assisted diagnosis. In this study, breast ultrasonography was conducted to select 247 ultrasound images of 71 normal breast tissues, 87 fibroadenomas among benign tumors, and 89 malignant tumors. The selected images were calculated using a statistical method with 21 feature parameters extracted using the gray level co-occurrence matrix algorithm, and classified as normal breast tissue, benign tumor, and malignancy. In addition, we proposed five feature parameters that are available for computer-aided diagnosis of breast cancer classification. The average classification rate for normal breast tissue, benign tumors, and malignant tumors, using this feature parameter, was 82.8%.

유방암 조기 진단을 위한 초음파 영상의 다단계 전이 학습 (Multistage Transfer Learning for Breast Cancer Early Diagnosis via Ultrasound)

  • 겔란 아야나;박진형;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.134-136
    • /
    • 2021
  • 인공지능 알고리즘을 이용한 유방암의 조기진단에 관련된 연구는 최근들어 활발하게 진행되고 있다. 이는 연구용으로 공개된 초음파 유방 이미지를 활용하여 다양하게 개발되고 있으나, 사용자의 목적에 맞는 처리 속도 및 정확도 등에 다양한 한계점을 보인다. 이러한 문제를 해결하기 위해, 본 논문에서는 ImageNet에서 학습된 ResNet 모델을 현미경 기반 암세포 이미지에서 활용이 가능한 다단계 전이 학습을 제안하고, 이를 다시 전이 학습하여 초음파 유방암 영상을 양성 및 악성으로 분류하는 실험을 진행하였다. 실험을 위한 영상은 양성과 악성이 포함된 250장의 유방암 초음파 영상과 27,200장의 암 세포주 영상으로 구성되었다. 제안된 다단계 전이 학습 알고리즘은 초음파 유방암 영상을 분류하였을 때 96% 이상의 정확도를 보였으며, 향후 암 세포주 및 실시간 영상처리 등의 추가를 통해 보다 높은 활용도와 정확도를 보일 것으로 기대한다.

  • PDF

유방 초음파 영상에서 도메인 경험 지식 기반의 노이즈 필터링 알고리즘을 이용한 ROI(Region Of Interest) 추출 (The Extraction of ROI(Region Of Interest)s Using Noise Filtering Algorithm Based on Domain Heuristic Knowledge in Breast Ultrasound Image)

  • 구락조;정인성;최성욱;박희붕;왕지남
    • 산업경영시스템학회지
    • /
    • 제31권1호
    • /
    • pp.74-82
    • /
    • 2008
  • The objective of this paper is to remove noises of image based on the heuristic noises filter and to extract a tumor region by using morphology techniques in breast ultrasound image. Similar objective studies have been conducted based on ultrasound image of high resolution. As a result, efficiency of noise removal is not fine enough for low resolution image. Moreover, when ultrasound image has multiple tumors, the extraction of ROI (Region Of Interest) is not accomplished or processed by a manual selection. In this paper, our method is done 4 kinds of process for noises removal and the extraction of ROI for solving problems of restrictive automated segmentation. First process is that pixel value is acquired as matrix type. Second process is a image preprocessing phase that is aimed to maximize a contrast of image and prevent a leak of personal information. In next process, the heuristic noise filter that is based on opinion of medical specialist is applied to remove noises. The last process is to extract a tumor region by using morphology techniques. As a result, the noise is effectively eliminated in all images and a extraction of tumor regions is possible though one ultrasound image has several tumors.

Breast Cancer Classification in Ultrasound Images using Semi-supervised method based on Pseudo-labeling

  • Seokmin Han
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권1호
    • /
    • pp.124-131
    • /
    • 2024
  • Breast cancer classification using ultrasound, while widely employed, faces challenges due to its relatively low predictive value arising from significant overlap in characteristics between benign and malignant lesions, as well as operator-dependency. To alleviate these challenges and reduce dependency on radiologist interpretation, the implementation of automatic breast cancer classification in ultrasound image can be helpful. To deal with this problem, we propose a semi-supervised deep learning framework for breast cancer classification. In the proposed method, we could achieve reasonable performance utilizing less than 50% of the training data for supervised learning in comparison to when we utilized a 100% labeled dataset for training. Though it requires more modification, this methodology may be able to alleviate the time-consuming annotation burden on radiologists by reducing the number of annotation, contributing to a more efficient and effective breast cancer detection process in ultrasound images.

유방 초음파 영상의 CAD 적용을 위한 Segmentation 알고리즘 제안 (The Proposal of Segmentation Algorithm for the Applying Breast Ultrasound Image to CAD)

  • 구락조;정인성;배재호;최성욱;박희붕;왕지남
    • 산업공학
    • /
    • 제21권4호
    • /
    • pp.394-402
    • /
    • 2008
  • The objective of this paper is to design segmentation algorithm for applying the breast ultrasound image to CAD(Computer Aided Diagnosis). This study is conducted after understanding limits, used algorithm and demands of CAD system by interviewing with a medical doctor and analyzing related works based on a general CAD framework that is consisted of five step-establishment of plan, analysis of needs, design, implementation and test & maintenance. Detection function of CAD is accomplished by Canny algorithm and arithmetic operations for segmentation. In addition to, long computing time is solved by extracting ROI (Region Of Interests) and applying segmentation technical methods based morphology algorithm. Overall course of study is conducted by verification of medical doctor. And validity and verification are satisfied by medical doctor's confirmation. Moreover, manual segmentation of related works, restrictions on the number of tumor and dependency of image resolution etc. was solved. This study is utilized as a support system aided doctors' subjective diagnosis even though a lot of future studies is needed for entire application of CAD system.

A Practical Implementation of Deep Learning Method for Supporting the Classification of Breast Lesions in Ultrasound Images

  • Han, Seokmin;Lee, Suchul;Lee, Jun-Rak
    • International journal of advanced smart convergence
    • /
    • 제8권1호
    • /
    • pp.24-34
    • /
    • 2019
  • In this research, a practical deep learning framework to differentiate the lesions and nodules in breast acquired with ultrasound imaging has been proposed. 7408 ultrasound breast images of 5151 patient cases were collected. All cases were biopsy proven and lesions were semi-automatically segmented. To compensate for the shift caused in the segmentation, the boundaries of each lesion were drawn using Fully Convolutional Networks(FCN) segmentation method based on the radiologist's specified point. The data set consists of 4254 benign and 3154 malignant lesions. In 7408 ultrasound breast images, the number of training images is 6579, and the number of test images is 829. The margin between the boundary of each lesion and the boundary of the image itself varied for training image augmentation. The training images were augmented by varying the margin between the boundary of each lesion and the boundary of the image itself. The images were processed through histogram equalization, image cropping, and margin augmentation. The networks trained on the data with augmentation and the data without augmentation all had AUC over 0.95. The network exhibited about 90% accuracy, 0.86 sensitivity and 0.95 specificity. Although the proposed framework still requires to point to the location of the target ROI with the help of radiologists, the result of the suggested framework showed promising results. It supports human radiologist to give successful performance and helps to create a fluent diagnostic workflow that meets the fundamental purpose of CADx.

유방 초음파 영상의 컴퓨터 보조 진단을 위한 특성 분석 (Analysis of characteristics for computer-aided diagnosis of breast ultrasound imaging)

  • 엄상희;남재현;예수영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.307-310
    • /
    • 2021
  • 지난 몇년간 유방 초음파영상을 이용한 신호 및 영상처리 기술과 자동 영상 최적화 기술, 유방 종괴 자동 검출 및 분류 기술 등, 컴퓨터 보조 진단(computer-aided diagnosis, CAD)을 활용하는 연구들이 활발히 진행되어지고 있다. 컴퓨터진단기술이 개발될수록 암의 조기 발견이 정확하고 빠르게 진행되어 건강 보험과 환자의 검사 빙용을 줄일 수 있고 조직 검사에 대한 불안감을 없앨 수 있을 것으로 기대된다. 본 논문에서는 GLCM(gray level co-occurrence matrix)을 사용하여 초음파 영상에서 종양의 정량적 분석을 진행하여 컴퓨터보조 진단에 활용 가능성을 실험하였다.

  • PDF

Automated Breast Ultrasound System for Breast Cancer Evaluation: Diagnostic Performance of the Two-View Scan Technique in Women with Small Breasts

  • Bo Ra Kwon;Jung Min Chang;Soo Yeon Kim;Su Hyun Lee;Soo-Yeon Kim;So Min Lee;Nariya Cho;Woo Kyung Moon
    • Korean Journal of Radiology
    • /
    • 제21권1호
    • /
    • pp.25-32
    • /
    • 2020
  • Objective: To comparatively evaluate the scan coverage and diagnostic performance of the two-view scan technique (2-VST) of the automated breast ultrasound system (ABUS) versus the conventional three-view scan technique (3-VST) in women with small breasts. Materials and Methods: Between March 2016 and May 2017, 136 asymptomatic women with small breasts (bra cup size A) suitable for 2-VST were enrolled. Subsequently, 272 breasts were subjected to bilateral whole-breast ultrasound examinations using ABUS and the hand-held ultrasound system (HHUS). During ABUS image acquisition, one breast was scanned with 2-VST, while the other breast was scanned with 3-VST. In each breast, the breast coverage and visibility of the HHUS detected lesions on ABUS were assessed. The sensitivity and specificity of ABUS were compared between 2-VST and 3-VST. Results: Among 136 breasts, eight cases of breast cancer were detected by 2-VST, and 10 cases of breast cancer were detected by 3-VST. The breast coverage was satisfactory in 94.1% and 91.9% of cases under 2-VST and 3-VST, respectively (p = 0.318). All HHUS-detected lesions were visible on the ABUS images regardless of the scan technique. The sensitivities and specificities were similar between 2-VST and 3-VST (100% [8/8] vs. 100% [10/10], and 97.7% [125/128] vs. 95.2% [120/126], respectively), with no significant difference (p > 0.05). Conclusion: 2-VST of ABUS achieved comparable scan coverage and diagnostic performance to that of conventional 3-VST in women with small breasts.