• Title/Summary/Keyword: Breakwater width

Search Result 72, Processing Time 0.018 seconds

Characteristics of Water Surface Variations around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation (설상사주 형성조건하에 있는 3차원투과성잠제 주변에서 수면변동의 특성)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.335-349
    • /
    • 2017
  • Submerged breakwaters installed under the water surface are a representative coastal structure to prevent coastal erosion, and various types of submerged breakwaters have been proposed and discussed so far. Generally, submerged breakwaters make the complex wave fields due to abrupt change in water depth at the crown of the breakwater. In this study, wave heights and mean water level formed around a breakwater are examined numerically for three-dimensional permeable submerged breakwaters. OLAFOAM, CFD open source code, is applied in the numerical analysis, and the comparisons are made with available experimental results on the permeable upright wall and the impermeable submerged breakwater to verify its applicability to the three-dimensional numerical analysis. Based on the applicability of OLAFOAM numerical code, the wave height and mean water level distribution formed around the permeable submerged breakwaters are investigated under the formation condition of salient. The numerical results show that as the gap width between breakwaters decreases, the wave height in the center of the gap increases, while it decreases behind the gap, and the installing position of the breakwater from the shoreline has little influence on the change of the wave height. Furthermore, it is found that the decrease of the mean water level near the gap between breakwaters increases with decreasing of the gap width.

Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM (OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Kim, Sang-Gi;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.286-304
    • /
    • 2017
  • In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study is OLAFOAM which newly added wave generation module, porous media analysis module and reflected wave control module based on OpenFOAM that is open source CFD software published under the GPL license. To investigate the applicability of OLAFOAM, the variations of wave pressure acting on the three-dimensional slit caisson were compared to the previous experimental results under the regular wave conditions, and then the performance for irregular waves was examined from the reproducibility of the target irregular waves and frequency spectrum analysis. As a result, a series of numerical simulations for the new-type of circular perforated caisson breakwaters, which is similar to slit caisson breakwater, was carried out under the irregular wave actions. The hydraulic characteristics of the breakwater such as wave overtopping, reflection, and wave pressure distribution were carefully investigated respect to the significant wave height and period, the wave chamber width, and the interconnectivity between them. The numerical results revealed that the wave pressure acting on the new-type of circular perforated caisson breakwaters was considerably smaller than the result of the impermeable vertical wall computed by the Goda equation. Also, the reflection of the new-type caisson breakwater was similar to the variation range of the reflection coefficient of the existing slit caisson breakwater.

Distribution of Wave Forces at Points on a Vertical Structure of Semi-Infinite Breakwater Considering Diffraction (회절을 고려한 반무한방파제 형식의 직립구조물에 작용하는 지점별 파력 분포)

  • Jung, Jae-Sang;Lee, Changhoon;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.240-249
    • /
    • 2016
  • In this study, we investigated wave force distribution at points on a vertical structure of semi-infinite breakwater considering diffraction. Wave forces of monochromatic and random waves on a vertical structure are studied considering diffractions in front and lee side of the breakwater for non-breaking wave condition. We selected width of breakwater are 0 for reference condition. In monochromatic wave case, relative wave force becomes 0 on the head of the breakwater by acting incident wave force and diffracting wave force simultaneously and oscillating patterns of relative wave force occurs based on 1.0 as distance from the head increases. Relative wave force of monochromatic waves decreases as incident wave angle increases. Relative wave force of random waves is defined by using ratio of root mean square and wave force spectrum in this study. The case considering random phase of each wave components are compared to the case which don't consider random phase and both results are almost similar. Relative wave force of random waves is also 0 near the head of the breakwater likewise monochromatic wave. Oscillating pattern of relative wave force of random waves becomes relatively weaker for composition of each wave components as distance from the head increases.

Diffraction of water waves by an array of vertical barriers and heterogeneous bottom

  • Mondal, R.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • The interaction of head waves with an infinite row of identical, equally spaced, rectangular breakwaters is investigated in the presence of uneven bottom topography. Using linear water wave theory and matched eigenfunction expansion method, the boundary value problem is transformed into a system of linear algebraic equations which are numerically solved to know the velocity potentials completely. Utilizing this method, reflected and transmitted wave energy are computed for different physical parameters along with the wave field in the vicinity of breakwaters. It is observed that the wave field becomes more complicated when the incoming wavelength becomes smaller than the channel width. A critical ratio of the gap width to the channel width, corresponding to the inflection point of the transmitted energy variation, is identified for which 1/3 of the total energy is transmitted. Similarly, depending on the incident wavelength, there is a critical breakwater width for which a minimum energy is transmitted. Further, the accuracy of the computed results is verified by using the derived energy relation.

The Study on the Wave Interaction Due to Offshore Structures (파랑과 해안구조물과의 상호작용에 관한 연구)

  • Kim, Sung-Duk;Lee, Ho-Jin;Dho, Hyon-Seung
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.4
    • /
    • pp.139-145
    • /
    • 2009
  • The present study is to investigate the effect of wave-structure interaction such as wave oscillation. The theoretical method is based upon the linear diffraction theory obtained by the boundary element method. The water depth and incident wave period in fluid region are assumed to be constant. To investigate the wave interaction due to offshore structures, the numerical program has been developed and the simulation has been carried out by varying the conditions of distance and width of offshore structures. This study can effectively be utilized for safety assessment to various breakwater systems and layout of offshore breakwater in the ocean and coastal field. It can give information for the safety to construct offshore structure and revetment in coastal region.

Reflection Characteristics of Vortical Slit Caisson Breakwater (종 SLIT형 케이슨 방파제의 반사특성)

  • 이종인;조지훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.263-272
    • /
    • 2001
  • Recently, some attempts to construct slit caisson-type breakwaters are made in Korea. Since slit caisson-type breakwaters are suitable for relatively deep sea areas, a lot of theoretical and experimental researches have been performed. In this study, the reflection characteristics of vertical slit caisson breakwaters are investigated based on the measured data in two-dimensional hydraulic model tests with irregular waves. The experiments were conducted for various cases; variation of porosity of perforated-wall, width of wave chamber, number of slits for single-and double-chamber, respectively. It is found that in the case when the wave steepness (H/L$_{s}$ ) is small, the reflection coefficients are large. The existing researches have shown that the wave reflection is minimized when the nondimensional width of wave chamber B/L is about 0.2~0.25 for the regular waves. However, for the irregular waves the reflection is lowest when $B/L_2$, is 0.13~0.15. For a same porosity condition, the wave dissipation is stronger as the width of s1it is larger. The double-chamber caisson is superior to single- chamber caisson in the wave dissipating effects.

  • PDF

Analysis on the Wave Characteristics of Submerged Breakwater Considering Energy Dissipation of Seabed (해저면의 에너지 감쇠를 고려한 불투과 잠제의 파랑특성해석)

  • Kim Nam-Hyeong;Yang Soon-Bo;Park Min-Su;Kim Sang-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.131-136
    • /
    • 2004
  • The transmission coefficients of impermeable submerged breakwater on permeable bottom are computed numerically using a boundary element method. The analysis method is based on the wave pressure function with the continuity in the analytical region including fluid and structures. Wave motion over permeable bottom is simulated by introducing a linear dissipation coefficient and an added mass coefficient. The results indicate that the wave over permeable bottom travels being damped, and that transmission coefficients for permeable bottom are smaller than those for impermeable bottom, and result from the change of width and height of submerged breakwater.

  • PDF

Hydrodynamic Analysis of Two-dimensional Floating Breakwater in Weakly Nonlinear Waves (약 비선형 파랑에 대한 연직 2차원 부방파제의 동수역학적 해석)

  • Lee, Jeongwoo;Cho, Woncheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.539-549
    • /
    • 2006
  • The performance of a pontoon-type floating breakwater (FB) is investigated numerically with the use of a second-order time domain model. The model has been developed based on potential theory, perturbation theory and boundary element method. This study is focused on the effects of weakly nonlinear wave on the hydrodynamic characteristics of the FB. Hydrodynamic forces, motion responses, surface elevation, and wave transmission coefficient around the floating breakwater are evaluated for various wave and geometric parameters. It is shown that the second-order wave component is of significant importance in calculating magnitudes of the hydrodynamic forces, mooring forces and the maximum response of a structure. The weak non-linearity of incident waves, however, can have little influence on the efficiency of the FB. From numerical simulations, the ratio of draft and depth, the relationship of wave number and width are presented for providing an effective means of reducing wave energy.

ANALYSIS OF VELOCITY STRUCTURE OF WALL JET ORIGINATING FROM CIRCULAR ORIFICES IN SHALLOW WATER

  • Kim, Dae-Geun;Seo, Il-Won
    • Water Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.235-245
    • /
    • 2002
  • In this study, breakwater model which has several outlet pipes to discharge water is settled in the experimental open channel and mean velocity distributions of multi wall jet are measured. The length of flow of flow establishment of wall jet is shorter than that of free jet and decay rate of jet centerline longitudinal velocity along x is linear in 0.3 $\leq$ x/$\l_q$ $\leq$ 17. The rate of vertical width and lateral width spreading of multi wall jet is respectively 0.0753, 0.157~0.190.

  • PDF

Wave Reflection Control Functions of Mounds for a Foundation of Breakwaters (방파제 기초 mound부의 반사파 제어기능에 관한 연구)

  • Ryu Cheong-Ro;KIM Jong-In
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.4
    • /
    • pp.370-378
    • /
    • 1987
  • Wave reflection control functions of mound for the foundation of composite and perforated break-waters were investigated through the theoretical considerations. The theory developed is based on a simple summation of components of reflected waves. The applicability of the theory is assured by the comparative studies of the theoretical calculation and experimental data on the sea surface elevation in front of a breakwater. It is found that the reflection is mainly controlled by depth and width of the mound. In the design of composite type perforated breakwaters, the width of perforated part of the upright section can be decreased to less than half of the conventional design width for the same reflection by using the reflection control function of mound part and the reflection can be reduced until less than $30\%$ of that in the composite breakwaters. Using the results, a design method of mounds is proposed, by which the reduction of wave reflection is assured under the given wave conditions.

  • PDF