• Title/Summary/Keyword: Breakdown voltage

Search Result 1,512, Processing Time 0.024 seconds

An Analysis of IGBT(Insulator Gate Bipolar Transistor) Structure with an Additional Circular Trench Gate using Wet Oxidation (습식 산화를 이용한 원형 트렌치 게이트 IGBT에 관한 연구)

  • Kwak, Sang-Hyeon;Kyoung, Sin-Su;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.981-986
    • /
    • 2008
  • The conventional IGBT has two problems to make the device taking high performance. The one is high on state voltage drop associated with JFET region, the other is low breakdown voltage associated with concentrating the electric field on the junction of between p base and n drift. This paper is about the structure to effectively improve both the lower on state voltage drop and the higher breakdown voltage than the conventional IGBT. For the fabrication of the circular trench IGBT with the circular trench layer, it is necessary to perform the only one wet oxidation step for the circular trench layer. Analysis on both the on state voltage drop and the breakdown voltage show the improved values compared to the conventional IGBT structure. Because the circular trench layer disperses electric field from the junction of between p base and n drift to circular trench, the breakdown voltage increase. The on state voltage drop decrease due to reduction of JFET region and direction changed of current path which pass through reversed layer channel. The electrical characteristics were studied by MEDICI simulation results.

Influence of SF6/N2 Gas Mixture Ratios on the Lightning Streamer Propagation Characteristics of 22 kV MV Circuit Breaker

  • Gandhi, R.;Chandrasekar, S.;Nagarajan, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1663-1672
    • /
    • 2018
  • In recent times, gas insulated medium voltage (MV) circuit breakers (CB) form a vital component in power system network, considering its advantages such as reduced size and safety margins. Gas insulation characteristics of circuit breakers are generally measured by lightning impulse (LI) test according to IEC standard 60060-1 as a factory routine test. Considering the environmental issues of $SF_6$ gas, many research works are being carried out towards the mixture of $SF_6$ gases for high voltage insulation applications. However, few reports are only available regarding the LI withstand and streamer propagation characteristics (at both positive and negative polarity of waveform) of $SF_6/N_2$ gas mixture insulated medium voltage circuit breakers. In this paper, positive and negative polarity LI tests are carried out on 22 kV medium voltage circuit breaker filled with $SF_6/N_2$ gas mixture at different gas pressures (1-5 bar) and at different gas mixture ratios. Important LI parameters such as breakdown voltage, streamer velocity, time to breakdown and acceleration voltage are evaluated with IEC standard LI ($1.2/50{\mu}s$) waveform. Weibull distribution analysis of LI breakdown voltage data is carried out and 50% probability breakdown voltage, scale parameter and shape parameter are evaluated. Results illustrate that the $25%SF_6+75%N_2$ gas filled insulation considerably enhances the LI withstand and breakdown strength of MV circuit breakers. LI breakdown voltage of circuit breaker under negative polarity shows higher value when compared with positive polarity. Results show that maintaining the gas pressure at 0.3 MPa (3 bar) with 10% $SF_6$ gas mixed with 90% $N_2$ will give optimum lighting impulse withstand performance of 22 kV MV circuit breaker.

Breakdown Voltage and On-resistance Analysis of Partial-isolation LDMOS (Partial-isolation LDMOS의 항복전압과 온저항 분석)

  • Sin-Wook Kim;Myoung-jin Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.567-572
    • /
    • 2023
  • In this paper, the breakdown voltage of Pi-LDMOS (Partial isolation lateral double diffused metal oxide semiconductor) was analyzed by simulation. Breakdown voltage variation is investigated under various settings of Parial buied oxide(P-BOX) parameters(length, thickness, location) and their mechanism is specified. In addition, the change in on-resistance in the breakdown voltage and trade-off relationship was analyzed according to the change in the P-BOX parameter, and the Figure-of-merit(FOM) was calculated and compared. In proposed structure, Lbox=5 ㎛, tbox=2 ㎛, and Lbc=2 ㎛ showed the highest breakdown voltage of 138V, and Lbox=5 ㎛, tbox=1.6 ㎛, and Lbc=2 ㎛ showed the highest FOM. Compared to conventional LDMOS, the breakdown voltage is 123% and FOM is 3.89 times improved. Therefore, Pi-LDMOS has a high breakdown voltage and FOM, which can contribute to the improvement of the stable operating range of the Power IC.

The Develop of Super Junction IGBT for Using Super High Voltage (대용량 전력변환용 초접합 IGBT 개발에 관한 연구)

  • Chung, Hun-Suk;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.496-500
    • /
    • 2015
  • This paper was proposed the theoretical research and optimal design 3000V super junction NPT IGBT for using electrical automotive and power conversion. Because super junction IGBT was showed ultra low on resistance, it was structure that can improve the thermal characteristics of conventional NPT IGBT. The electrical characteristics of super junction NPT IGBT were 2.52 V of on state voltage drop, 4.33 V of threshold voltage and 2,846 V breakdown voltage. We did not obtaing 3,000 V breakdown voltage but we will obtain 3,000 V breakdown voltage through improving p pillar layer. If we are carried this research, This device will be used electrical automotive, power conversiton and high speed train.

Dielectric Characteristics of Subcooled $LN_2$ for Insulation Design of HTS Fault Current Limiters (고온초전도 한류기의 절연설계를 위한 과냉각 액체질소의 절연내력 특성)

  • 백승명;정종만;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.46-50
    • /
    • 2003
  • In the dielectric insulation design of any high temperature superconducting (HTS) apparatus as well as HTS fault current limiter in the electrical power systems, the breakdown characteristics of cryogenic coolants such as liquid nitrogen ($LN_2$) are an important factor of the insulating engineering. Previous reports concerned with the breakdown characteristics of liquid nitrogen have pointed out that bubbles and gaseous nitrogen have a treat influence on their breakdown phenomena, However, useful data for practical insulation design of HTS fault CUITent limiter operating at subcooled L$N_2$ have not been obtained enough. Therefore, this paper presents an experimental investigate of breakdown phenomena in liquid nitrogen under AC voltage, And, we observed the breakdown voltage (BDV) of liquid nitrogen with lowering temperature. The Weibull plots of the breakdown voltage of subcooled $LN_2$ for the needle-plane electrode with d= 10 mm are studied, The dependence of breakdown voltage for needle-plane and pancake coil-pancake coil electrode on temperature is illustrated, The relationship between the AC breakdown characteristics and the temperature were clarified.

Study on the Prediction of the Life-time in the Macroscopic Solid-Solid Interfaces (고체-고체 거시계면의 수명예측에 관한 연구)

  • 박정규;배덕권;정동회;오재한;김충혁;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.775-778
    • /
    • 2000
  • In this paper, the life-time of macro interface between Epoxy/EPDM which consists in underground power cable joints is predicted. The electrode system of specimen is designed by FEM(finite elements method). The breakdown strength of specimens are observed by applying high AC voltage at the room temperature. The breakdown times under the constant voltage below the breakdown voltage were gained. As constant voltage is applied, the breakdown time is proportion to the breakdown strength. The life exponent n is gained by inverse power law, and the long breakdown life time can be evaluated.

  • PDF

A Dual Gate AlGaN/GaN High Electron Mobility Transistor with High Breakdown Voltages (높은 항복 전압 특성을 가지는 이중 게이트 AlGaN/GaN 고 전자 이동도 트랜지스터)

  • Ha Min-Woo;Lee Seung-Chul;Her Jin-Cherl;Seo Kwang-Seok;Han Min-Koo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.1
    • /
    • pp.18-22
    • /
    • 2005
  • We have proposed and fabricated a dual gate AlGaN/GaN high electron mobility transistor (HEMT), which exhibits the low leakage current and the high breakdown voltage for the high voltage switching applications. The additional gate between the main gate and the drain is specially designed in order to decrease the electric field concentration at the drain-side of the main gate. The leakage current of the proposed HEMT is decreased considerably and the breakdown voltage increases without sacrificing any other electric characteristics such as the transconductance and the drain current. The experimental results show that the breakdown voltage and the leakage current of proposed HEMT are 362 V and 75 nA while those of the conventional HEMT are 196 V and 428 nA, respectively.

Temperature Dependent Breakdown Voltage and On-resistance of Si Power MOSFETs (실리콘 전력 MOSFET의 온도에 따른 항복전압 및 On 저항)

  • Park, Il-Yong;Choe, Yeon-Ik;Jeong, Sang-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.4
    • /
    • pp.246-248
    • /
    • 2000
  • Closed-form expressions for the temperature dependent breakdown voltage and the on-resistance of the Si power MOSFETs were derived by employing effective temperature dependent ionization coefficient for electrons and holes. The breakdown voltage increases by 20% and the on-resistance increases 2 times when the temperature increases from 300 K to 423 K. The analytic results normalized to the values at 300 K show good agreement with the experimental data of Motorola within 3.5% and 7% for the breakdown voltage and the on-resistance, respectively.

  • PDF

Insulation Breakdown Properties of AC and DC according to Curvature Variation of PAI Organic/Inorganic Hybrid Coils (PAI 유/무기 하이브리드코일의 곡률변화에 따른 AC 및 DC 절연파괴 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1721-1726
    • /
    • 2016
  • 4-types of coils were prepared by coating with polyamideimide (PAI) organic/inorganic hybrid. One type was made with original PAI vanish and the other 3-types were made of double layers, that was to say, high flexural PAI layer and high anti-corona PAI/nanosilica (15 wt%) layer. Drying temperature (T/D) were $220^{\circ}C$, $240^{\circ}C$, and $260^{\circ}C$, respectively and rectangular type coil for high-voltage rotating machine was used. DC and AC electrical breakdown tests were carried out in order to study the insulation properties according to T/D temperature and coil curvature (5, 15, and $25mm{\Phi}$). As the curvature increased, electrical breakdown voltage decreased and as T/D temperature decreased, electrical breakdown voltage increased.

An Estimate of the Spark Plug Gap by Measuring Breakdown Voltage (방전전압 측정에 의한 점화플러그의 간극 추정)

  • Jeon, Chang-Sung;Kim, Jung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.210-213
    • /
    • 2005
  • This article describes an estimate method of the spark plug gap by measuring breakdown voltage. Breakdown voltage is the function of spark plug gap, pressure, temperature and humidify. However. It is dominated mainly by the spark plug gap. This technique is applied to in-line process test of the spark plug gap in automobile engine production. Breakdown voltage of normal spark plugs slightly scatters in ordinary conditions and if there is dust or burr in the gap, breakdown voltage gets lower. This technique saves repairing time for bad spark plug and attributes to improve the quality of automobile engine.

  • PDF