• 제목/요약/키워드: Brazed plate heat exchanger

검색결과 23건 처리시간 0.023초

R-22를 사용한 용접형 판형 열교환기의 응축열전달 및 압력강하 특성에 관한 연구 (Study on Condensation Heat Transfer and Pressure Drop Characteristics of R-22 in Brazed Plate Heat Exchanger)

  • 전창덕;권오갑;이진호
    • 대한기계학회논문집B
    • /
    • 제25권2호
    • /
    • pp.171-179
    • /
    • 2001
  • Experimental study has been carried out on the characteristics of pressure drop and heat transfer of brazed plate heat exchangers using R-22. Data are presented for the following range of variables: the mass flux (40∼90kg/$m^2$s), chevron angle ($20^{\circ}$, $35^{\circ}$, $45^{\circ}$) and inlet pressure of the refrigerant (1.4 and 1.6MPa). For both subcooled and two-phase flow, as chevron angle increases, pressure drop and heat transfer coefficient decrease. Condensation heat transfer coefficient and pressure drop were compared with the previously proposed correlations. Among therm, Traviss correlation agreed with experimental results within -40%∼-84% for heat transfer coefficient and -59%∼62% for pressure drop.

판형 열교환기의 피치 및 세브론각이 열에너지 성능에 미치는 영향 (Effects of Plate Pitch and Chevron Angle in a Plate Heat Exchanger on Thermal Energy Performance)

  • 강병하;한상규
    • 한국수소및신에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.194-200
    • /
    • 2004
  • Thermal energy performance of a brazed plate heat exchanger has been evaluated experimentally. The effects of plate pitch as well as chevron angle of a plate heat exchanger on the heat transfer rate and pressure drop have been investigated in the wide range as mass flow rates in detail. This problem is of particular interest in the design of a plate heat exchanger. The results obtained indicate that both heat transfer rate and pressure drop are increased as mass flow rate is increased, as expected. It is also found that the heat transfer rate is increased with a decrease in the plate pitch while the heat transfer is decreased with a decrease in the chevron angle. Friction factor correlations are suggested based on the measured pressure drop and effectiveness of plate heat exchangers are also compared.

대체 냉매 R410A를 적용한 판형열교환기의 응축열전달 특성 및 압력강하에 대한 실험적 연구 (An Experimental Study on Condensation Heat Transfer Characteristics and Pressure Drop of Plate Heat Exchangers using the Alternative Refrigerant R410A)

  • 김윤호;한동혁;이규정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.220-225
    • /
    • 2001
  • The plate heat exchanger is characterized. by low pressure drop and high heat transfer coefficient. The experimental study has been performed on the condensation heat transfer and pressure drop characteristics of the plate heat exchangers in this study. In the present study, a brazed type plate heat exchanger was investigated at a chevron angle of $45^{\circ},\;55^{\circ},\;and\;70^{\circ}$ with R410A. Condensation temperatures were varied from $20^{\circ}C\;and\;30^{\circ}C$, and mass flux was ranged from $13{\sim}34\;kg/m^{2}s$ with constant heat flux ($=5\;kw/m^{2}$). The heat transfer coefficient and pressure drop increased with the chevron angle. Average condensation heat transfer coefficients and pressure drops are decreased with increasing condensation tempeature.

  • PDF

유동공진이 판형 열교환기의 열전달 향상과 압력강하에 미치는 영향 (Effects of Flow Resonance on Heat Transfer Enhancement and Pressure Drop in a Plate Heat Exchanger)

  • 한상규;강병하
    • 설비공학논문집
    • /
    • 제17권2호
    • /
    • pp.165-172
    • /
    • 2005
  • Heat transfer enhancement of three types of brazed plate heat exchangers has been evaluated experimentally. The effects of flow resonance in a plate heat exchanger on the heat transfer rate and pressure drop have been investigated in a wide range of mass flow rates in detail. The problem is of particular interest in the innovative design of a plate heat exchanger by flow resonance. The results obtained indicate that both heat transfer coefficient and pressure drop are increased as mass flow rate is increased, as expected. It is also found that the heat transfer enhancement is increased with an increase in the plate pitch, while the heat transfer is decreased with a decrease in the chevron angle. Pressure drop also increased with an increase in the plate pitch and with a decrease in the chevron angle. Heat transfer enhancement in the plate heat exchangers is maximized by flow resonance and the resonance frequency of the present plate heat exchangers is found to be in the range of $10~15\;Hz$.

인터쿨러용 판형열교환기 내부유로의 유동현상에 관한 전산유체해석 (CFD Analysis for the Flow Phenomena of the Narrow Channels in Plate Heat Exchanger for Intercooler)

  • 윤천석;한승한
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.91-100
    • /
    • 2004
  • Plate heat exchangers (PHE) have been widely used in different industrial applications, because of high heat transfer efficiency per unit volume. Basic study is performed for PHE to the application of intercooler in automobile. In order to understand the flow phenomena in the plate heat exchanger, a channel which was formed by the upper and lower plate in single plate was considered as calculation domains. Because chevrons attached on the upper plate are brazed with chevrons attached on the lower plate, the flow channel has very complex configuration. This complex geometry was analyzed by Fluent. In order to validate this methodology the proper experimental and theoretical data are collected and compared with numerical results. Finally, due to the lack of experimental values for PHE to the application of intercooler, various chevron angles and air velocities at inlet were tested in terms of physical phenomena. From this point of view, results of velocity vector, path lines, static pressure, heat flux, heat transfer coefficient, and Nusselt number are physically reasonable and accepted for the solutions. From these results, the correlations for pressure drop and Nusselt number with respect to chevron angle and Reynolds number in specific PHE are obtained for the design purpose. Thus, the methodology of the flow analysis in the full geometry of the channel was established for the predictions of performance in plate heat exchanger.

Plate & Shell 열교환기내에서 R-718의 열전달 및 압력강하 특성에 관한 실험적 연구 (Experimental Study on Heat Transfer and Pressure Drop Characteristics for R-718 in Plate and Shell Heat Exchanger)

  • 강석현;서무교;김영수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.270-275
    • /
    • 2000
  • In this study, heat transfer and Pressure drop characteristics for R-718 in the plate and shell heat exchanger (P&SHE) investigated experimentally. The plates are circular and welded into a stack which fits into a cylindrical shell in P&SHE. Although apparently very different from rectangular the compact brazed plate heat exchanger (CBE), the underlying flow passage structure through the P&SHE is the same as in the CBE. The R-718 between plate side and shell side was performed a counterflow heat exchange. Heat transfer characteristic of R-718 were measured for turbulent flow in P&SHE by using wilson plot technique. Heat transfer experiment Ivas performed in the $200{\leq}Re{\leq}500$ regime and Pressure drop experiment was performed in the $150{\leq}Re{\leq}1600$ regime. The purpose of this study is to investigate heat transfer and friction factor correlations for R-718 in P&SHE and to offer fundamental data for experiment

  • PDF

R410A를 이용한 브레이징 타입 판형열교환기에서 물 측 유동방향에 따른 응축/증발 성능 평가 (An Experimental Study on Evaporation/Condensation Heat Transfer with Flow Direction in Brazed Plate Heat Exchanger using Refrigerant 410A)

  • 이성우;정영만;이재근;이동혁
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1096-1101
    • /
    • 2009
  • The plate heat exchanger(PHE) in heat pump has two flow streams of the refrigerant and water. The flow direction of the refrigerant, unlike that of water, can be changed by a 4-way valve depending on operating condition. Therefore the flow arrangement is a parallel flow for heating and a counter flow for cooling, respectively. In this study, the effects of the flow direction of the water on the heat transfer rate are investigated experimentally. The experiments are carried out for brazed plate heat exchangers under a parallel and counter flow conditions in evaporation and condensation. The experimental parameters in this study include the mass flux of the refrigerant 410A from 3 to $14\;kg/m^2s$ and the flow patterns for the pressure of PHE fixed at 0.97 and 2.46 MPa. The results show that both the heat transfer rate and frictional pressure drop across the PHE increase with the mass flux. The heat transfer rate of the refrigerant 410A for evaporation show great sensitivity to flow direction of the water. The heat transfer rate for evaporation with a counter flow are 5-30% higher than that with a parallel flow.

  • PDF

판형 열교환기의 세브론각에 따른 응축열전달 및 압력강하 실험 (Experiments on Condensation Heat Transfer and Pressure Drop in Plate Heat Exchangers with Different Chevron Angles)

  • 김윤호;한동혁;이규정
    • 설비공학논문집
    • /
    • 제13권11호
    • /
    • pp.1141-1148
    • /
    • 2001
  • Experiments on the condensation heat transfer and pressure drop in the brazed type plate heat exchangers are performed with refrigerants R410A/R22. To investigate the geometric effect, plate heat exchangers with the same pitch and height but different $45^{\circ},\;35^{\circ}and\;20^{\circ}$ chevron angles are used. Varying the mass flux of refrigerant (13~34 kg/$m^2$), the condensing temperatures ($20^{\circ}C\;and\;30^{\circ}C$) and the vapor quality (from 0.9 to 0.15) at the same constant heat flux ($5kW/m^2$), the condensation heat transfer coefficients and pressure drops are measured. The heat transfer coefficients decrease slightly with increasing the condensing temperature at a given mass flux in all plate heat exchangers. The pressure drop increases with increasing the mass flux and the quality and decreasing the condensing temperature and the chevron angle.

  • PDF