• Title/Summary/Keyword: Branching characteristics

Search Result 131, Processing Time 0.028 seconds

Fatigue Crack Retardation and Retardation Mechanism in Variable Loading (The Effects of Crack Tip Branching in Crack Growth Retardation)

  • Song, Sam-Hong;Kwon, Yun-Ki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.76-81
    • /
    • 2002
  • In order to study the fatigue crack and retardation mechanism in variable loading, the effects of crack tip branching in crack growth retardation were examined. The characteristics of crack tip branching behavior were considered with respect to microstructure and crack tip branching angle was examined. Crack tip branching was observed along the grain boundary of finite and pearlite structure. It was found that the branching angle ranges from 25 to 53 degrees. Using the finite element method, the variable of crack driving farce to branching angle was examined. The effective crack driving farce (K$\_$eff/) decreased as the branching angle increased. The rate of decrease was 33% for kinked type and 29% for forked one. It was confirmed that the effect of crack tip branching is a very important factor in crack growth retardation. Therefore, crack branching effect should be considered in building the hypothetical model to predict crack growth retardation.

Crystallization Characteristics of Metallocene Low Density Polyethylene (메탈로센 선형 저밀도 폴티에틸렌의 결정화 거동)

  • 김경룡;한정우;조봉규;강호종
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.833-839
    • /
    • 2001
  • The crystallization characteristics of metallocene linear low density polyethylene was investigated by small angle light scattering and comparison was made with Ziegler-Natta linear low density polyethylene. The special efforts were made to find out the effects of branching number, length of branching and co-monomer content of m-LLDPE on the crystallization behavior of m-LLDPE. It was found that m-LLDPE has longer induction time to start crystallization from the amorphous state than that of conventional LLDPE with similar branching number, but the rate of crystallization seems not change much in both LLDPEs. Lowering of branching number in m-LLDPE resulted in both increasing of rate of crystallization and reducing induction time to crystallize. In general, the maximum size of spherulites of m-LLDPE is bigger than that of conventional LLDPE.

  • PDF

A Study on Fatigue Crack Retardation and Retardation Mechanism in Variable Loading (변동하중하에서의 피로크랙 지연현상과 지연기구에 관한 연구 - 균열성장 지연현상에 미치는 균열 가지의 영향 -)

  • Song, S.H.;Kwon, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.83-89
    • /
    • 1997
  • In order to study on fatigue crack retardation and retardation mechanism in variable loading, the effects of crack tip branching in fatigue crack growth retardation were examined. The characteristics of crack tip banching behavior was considered to micro structure. It was examined that the variation of crack tip branching angle. Crack tip branching was observed along the grain boundary of ferrite and pearlite structure. It was found that the abanching angle ranges from 25 to 53 degrees. Using the finite element method, the variable of crack driving force to branching angle was examined. The effective crack driving force ( $K_{\eff}$ ) decreased as the braching angle increases. The rate of decrease was 33% for the kinked type and 29% for the forked one. It was confirmed that the effect of crack tip branching is a very important factor in fatigue crack growth retardation. Therefore, crack branching effect should be considered building the hypoth- etical model to predict crack growth retardation.

  • PDF

Dynamic Brittle Fracture Captured with Peridynamics: Crack Branching Angle & Crack Propagation Speed (페리다이나믹스 해석법을 통한 동적취성 파괴거동해석: 분기 균열각도와 균열 전파속도)

  • Ha, Youn-Doh;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.637-643
    • /
    • 2011
  • The bond-based peridynamic model is able to capture many of the essential characteristics of dynamic brittle fracture observed in experiments: crack branching, crack-path instability, asymmetries of crack paths, successive branching, secondary cracking at right angles from existing crack surfaces, etc. In this paper we investigate the influence of the stress waves on the crack branching angle and the velocity profile. We observe that crack branching in peridynamics evolves as the phenomenology proposed by the experimental evidence: when a crack reaches a critical stage(macroscopically identified by its stress intensity factor) it splits into two or more branches, each propagating with the same speed as the parent crack, but with a much reduced process zone.

THE SOJOURN TIME AND RELATED CHARACTERISTICS OF THE AGE-DEPENDENT BRANCHING PROCESS

  • Kumar, B.-Krishba;Vijayakumar, A.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.157-172
    • /
    • 2004
  • An age-dependent branching process where disasters occur as a renewal process leading to annihilation or survival of all the cells, is considered. For such a process, the total mean sojourn time of all the cells in the system is analysed using the regeneration point technique. The mean number of cells which die in time t and its asymptotic behaviour are discussed. When the disasters arrival as a Poisson process and the lifetime of the cells follows exponential distribution, elegant inter- relationships are found among the means of (i) the total number of cells which die in time t (ii) the total sojourn time of all cells in the system upto time t and (iii) the number of living cells at time t. Some of the existing results are deduced as special cases for related processes.

Ice slurry transporting and branching characteristics for the district cooling (지역냉방을 위한 아이스슬러리 시스템의 수송 및 분기 특성)

  • Lee, Sang-Hoon;Yoo, Ho-Seon;Lee, Yoon-Pyo;Lee, Chang-Jun;Kwon, Hyeok-Min
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.662-667
    • /
    • 2009
  • The research are performed to check the characteristics of the ice slurry transport system for the district cooling. The system are installed at the 1st floored building which is as large as the $1204\;m^2$ ($86\;m{\times}14\;m$), and the pumping power and branching characteristics are measured by transporting of the ice slurry. The ice slurry transporting pipe is as long as 200 m. For the same cooling load, the higher IPF is, the lower the transporting flow rate and the pumping power are. But when the IPF is higher than 15%, no less decrease of the pumping power does happen. For the branching characteristics, through the branch pipe where the flow resistance is higher, the higher IPF is measured. A little higher IPF is measured at the thermal expansion branch.

  • PDF

An anatomical study on the branching patterns of left coronary artery in the rats (흰쥐 왼쪽관상동맥의 분지 양상에 관한 해부학적 연구)

  • Ahn, Dong-Choon;Kim, In-Shik
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.1
    • /
    • pp.7-17
    • /
    • 2007
  • The left main descending artery (LMDA) of left coronary artery (LCA) in rats runs around the left side of conus arteriosus after arising from the aortic sinus and descends to the apex of heart with branching several branches into the wall of left ventricle (LV). The ligation site of LMDA for myocardial infarction (MI) is the 2~4 mm from LCA origin, between the pulmonary trunk and left auricle. The characteristics that rat heart has no interventricular groove on the surface and its coronary arteries run intramyocardially with branching several branches give the difficulty in surgery for MI which resulted in expected size. This study was aimed to elucidate the branching patterns of the left coronary artery for analysis of MI size and for giving the basic data to producing small MI intentionally in 2 male species that are widely used, Sprague-Dowley (SD) and Wistar-Kyoto (WKY), in the world. Red latex casting was followed by the microdissection in 27 and 28 hearts of SD and WKY male rats, respectively. The branching patterns of LMDA were classified into 3 major types and others based on the left ventricular branches (L). The Type I, Type II, Type III and others are shown in 55.6%, 22.2%, 14.8%, and 7.4% in SD, 60.7%, 10.7%, 7.1%, and 21.5% in WKY, respectively. The branching number of the first left ventricular branch (L1) that are distribute the upper one third of LV was 1.2~1.5, and its branching sites were ranging 0.9~2.1 ßÆ from LCA origin. L2, the second left ventricular branch distributing middle one third of LV, was the number of 1.2~1.4 and branching out ranging 5.1~5.7 mm. L3, the third left ventricular branch of LMDA distributing lower one third of LV, was the number of 1~1.5 and branching out ranging 7.0~9.3 mm from LCA origin. The common branch of L1 and L2 was branched from LMDA with the number of 1.1, and its site was located in the distance of mean of 1.5 mm and 2.8 mm in SD and WKY, respectively. The common branch of L2 and L3 was branched from LMDA with the number of 1, and its site was located in the distance of mean of 7.2 mm and 2.9 mm in SD and WKY, respectively. The right ventricular branches (R) of LMDA were short and branched in irregularly compared with L. The number of 1~4 of R were branched from LMDA. With regarding to the distribution area of L and the ligation site for MI, moderate MI (25~35% of LV) might be resulted in 70.4% and 60.7% in SD and WKY rats. Small MI might be produced intentionally if the ligation would be located at the 4~6 mm from LCA origin in the left side of LMDA. These data wold be helpful to expect the size of MI and to reproduce of small MI, intentionally, in rat hearts.

A Field Application Case of Direct Ice Slurry Transporting System for District Cooling (지역냉방용 직접순환식 아이스슬러리 시스템의 현장적용 사례)

  • Yoo, Ho-Seon;Lee, Sang-Hoon;Lee, Yoon-Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.496-504
    • /
    • 2009
  • In order to investigate the feasibility of a direct ice slurry transporting system for the purpose of district cooling, a case study of field application is performed. The research aims include the field measurement of ice packing factor, the performance of coldness delivery, and the branching characteristics of ice slurry. Two representative types of pipe branch are dealt with in this work. For the slurry flow with ice volume fraction of 0.16 or less, the pipe blocking due to aggregation is not observed. Based on the time-wise variation of temperature in the storage tank, a calculating method of ice packing factor is newly developed, which seems to be useful when the brine concentration is unknown. It is confirmed that the mass flow rate of ice slurry per unit cooling load is markedly reduced with increasing the ice content. The pumping power also decreases, but remains unchanged for high ice fractions. The distribution of ice particle before and after branching shows a good uniformity within the range of 5% difference, but yields a unique trend depending on the flow rate.

3-D Flow Analysis of Blood and Blood Substitutes in a Double Branching Model (이중 분지관내 혈액 및 혈액대용유체의 3차원 유동해석)

  • Suh, Sang-Ho;Yoo, Sang-Sin;Roh, Hyung-Woon
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.187-196
    • /
    • 1997
  • The three-dimensional flow analysis using the finite volume method is presented to compare the steady flow characteristics of blood with those of blood substitutes such as water and aqueous polymer solution in an idealized double branching model. The model is used to simlllate the region of the abdominal aorta near the celiac and superior mesenteric branches. Apparent viscosities of blood and the aqueous Separan solution are represented as a function of shear rate by the Carreau model, Water and aqueoiu Separan AP-273 500wppm solution are frequently used as blood substitutes in vitro experiments. Water is a typical Newtonian fluid and blood and Separan solution are non-Newtonian fluids. Flow phenomena such as velocity distribution, pressure variation and wall shear stress distribution of water, blood and polymer solution are quite different due to differences of the rheological characteristics of fluids. Flow phenomena of polymer solution are qualitatively similar to those of blood but the phenomena of water are quite different from those of blood and polymer solution. It is recommended that a lion-Newtonian fluid which exhibits very similar rheological behavior to blood be used in vitro experiments. A non-Newtonian fluid whose rheological characteristics are very similar to those of blood should be used to obtain the meaninylll hemodynamic data for blood flow in vitro experiment and by numerical analysis

  • PDF

A numerical analysis on the extinction of hydrogen-oxygen diffusion flames at high pressure (고압하에서 수소-산소 확산화염의 소염 특성에 관한 수치 해석)

  • Son, Chae-Hun;Kim, Jong-Su;Jeong, Seok-Ho;Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1174-1184
    • /
    • 1997
  • Extinction characteristics of pure hydrogen-oxygen diffusion flames, at high pressures in the neighborhood of the critical pressure of oxygen, is numerically studied by employing counterflow diffusion flame as a model flame let in turbulent flames in rocket engines. The numerical results show that extinction strain rate increases almost linearly with pressure up to 100 atm, which can be explained by comparison of the chain-branching-reaction rate with the recombination-reaction rate. Since contributions of the chain-branching reactions, two-body reactions, are found to be much greater than those of the recombination reactions, three-body reactions, extinction is controlled by two-body reactions, thereby resulting in the linearity of extinction strain rate to pressure. Therefore, it is found that the chemical kinetic behaviors don't change up to 100 atm. Consideration of the pressure fall-off reactions shows a slight increase in extinction strain rate, but does not modify its linearity to pressure. The reduced kinetic mechanisms, which were verified at low pressures, are found to be still valid at high pressures and show good qualitative agreement in prediction of extinction strain rates. Effect of real gas is negligible on chemical kinetic behaviors of the flames.