• Title/Summary/Keyword: Branched Chain Volatile Fatty Acid

Search Result 14, Processing Time 0.019 seconds

Role for Volatile Branched-Chain and Other Fatty Acids in Species-Related Red Meat Flavors (휘발성 Branched-Chain과 n-Chain Fatty Acids가 육고기의 종을 결정하는 향기 성분으로서의 역할)

  • Jeong-Ok Kim;Yeong L. Ha;Robert. C. Lindsay
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.300-306
    • /
    • 1993
  • Speries-related meat flavors were investigated for red meats (bovine, porcine, caprine, and ovine). Volatile branched-chain fatty acids (VBCFAs) including 2-methylbutanoic, 3-methylbutanoic, 4-methylpentanoic, 2-ethylhexanoic, 4-methylhexanoic, 4-methyloctanoic, 6-methyloctanoic, 4-ethyloctanoic, 4-methylnonanoic, and 2-ethyldecanoic acids were identified in the meats from cow (bovine), pig (porcine), goats (caprine ; American white goat and Korean black goat), and lamb (ovine). Beef flavor of bovine meat was characterized by the basic meaty flavor, lacking in goaty and muttony flavor impacts due to low or absent in 4-methyl.octanoic and 4-ethyloctanoic acids. Porcine meat contained the least number of VBCFAs among sample species tested, and 3-methylbutanoic acid contributed to the unclean sweaty odor of pork. Caprine meat from Korean black and American white goats lacked in short VBCFAs (C5, C6, and C7) and contained 4-methyloctanoic and 4-ethyloctanoic acids contributing to the characteristic goaty flavor of caprine meat. Caprine meat flavor was distinctively characterized by 4-ethyloctanoic acid, while 4-methyloctanoic acid provides sweaty-muttony flavor to ovine meat. Although kinds of VBCFAs are same in two different varieties of caprine meats, meat sample from Korean black goat had stronger goaty odor and contained higher concentration of 4-ethyloctanoic acid than the meat sample from American white goat did.

  • PDF

Effect of Fermentable Carbohydrate in Diet on the Concentration of Volatile Fatty Acid and Volatile Organic Compound in Pig Slurry (발효탄수화물 첨가 사료가 양돈 슬러리의 휘발성 지방산과 휘발성 유기화합물 농도에 미치는 효과)

  • Cho, Sung-Back;Yang, Seung-Hak;Lee, Jun-Yeop;Kwag, Jeong-Hoon;Choi, Dong-Yun;Hwang, Ok-Hwa
    • Journal of Animal Environmental Science
    • /
    • v.19 no.2
    • /
    • pp.89-94
    • /
    • 2013
  • This study was performed to investigate the effect of beet plup and IRG (Italian ryegrass) dry powder in fattening pig diet on reducing concentration of odorous compounds in the pig slurry. Fifty fattening boars [(Landrace ${\times}$ Yorkshire) ${\times}$ Duroc] were randomly assigned to one of 3 treatments (control, beet plup 5%, and IRG 5%). Pigs (BW 50~110 kg) were fed diets formulated to meet the Korean Feeding Standard (2012) and their excretion was collected from the slurry pits. Short chain fatty acid (SCFA) and branched chain fatty acid (BCFA) were higher in beet plup (31,786, 3,985 ppm) and IRG (32,755, 4,261 ppm) treatments, which was not different among treatments (p>0.05), compared to control (p<0.05). Concentrations of phenols and indoles were highest in beet plup (183.83, 168.59 ppm) and IRG (9.32, 8.92 ppm) treatments. Altogether, addition level of two contents was not appropriate to decrease concentration of odorous compounds.

The Effect of the Addition Levels of Odor Reducing Contents on the Concentration of Volatile Fatty Acid and Volatile Organic Compound in Pig Slurry (양돈 슬러리에 첨가된 악취저감물질 수준별 휘발성 지방산과 휘발성 유기화합물 농도 비교)

  • Hwang, Ok-Hwa;Yang, Seung-Hak;Jeon, Jung-Hwan;Kim, Jung-Kon;Choi, Dong-Yun;Cho, Sung-Back
    • Journal of Animal Environmental Science
    • /
    • v.19 no.2
    • /
    • pp.101-108
    • /
    • 2013
  • This study was to investigate the effect of addition levels of odor reducing contents on reducing the concentration of odorous compounds. Slurry treatments included three levels mixture of horseradish powder (HP), mushroom waste (MW) and probiotics powder (PP), and non-treatment control (n=4 each group). Levels of odorous compounds were measured from the liquid slurry incubated in room temperature ($20{\sim}25^{\circ}C$) for 2 wk in chamber whose structure is similar to slurry pit. Concentration of phenols and indoles was lower (p<0.05) in level 1, which was mixed HP 0.01%, MW 0.4% and PP 0.004% (98.69, 1.87 ppm) compared to control. Short chain fatty acid (SCFA) and branched chain fatty acid (BCFA) was lowest (p<0.05) level 1 (6,557, 1675 ppm). Taken together, lower level are effective in reducing odorous compounds in pig slurry.

The Comparison of Concentration of Volatile Fatty Acids, Ammonia, and Volatile Organic Compounds in Pig Slurry (돈사 종류별 슬러리의 악취물질 농도 비교)

  • Cho, Sung Back;Yang, Seung Hak;Lee, Jun Yeop;Kim, Jung Kon;Jeon, Jung Hwan;Han, Man Hee;Han, Duck Woo;Jeong, Gwang Hwa;Kwag, Jeong Hoon;Choi, Dong Yun;Hwang, Ok Hwa
    • Journal of Animal Environmental Science
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2013
  • This study was performed to analyse the concentration of odorous compounds in the piggeries. Piggeries for different types of pigs include piglets, growing pigs, gestating and lactating sows. Slurry from these piggeries was sampled every month for chemical analysis. Short chain fatty acid (SCFA) was 9,862 ppm (piglet), 8,410 ppm (growing pigs), 6,791 ppm (fattening pigs), 3,508 ppm (lactating sows) and 1,687 ppm (gestating sows). Branched chain fatty acid (BCFA) was 1,634 ppm (piglet), 1,206 ppm (growing pigs), 868 ppm (fattening pigs), 493 ppm (lactating sows) and 185 ppm (gestating sows). Concentration of phenols was 209 ppm (piglet), 166 ppm (growing pigs), 127 ppm (fattening pigs), 85 ppm (lactating sows) and 36 ppm (gestating sows). Indoles was 18 ppm (piglet), 14 ppm (growing pigs), 8 ppm (fattening pigs), 6 ppm (lactating sows) and 4 ppm (gestating sows). Altogether, concentration of odorous compounds was decreased as pigs got aged.

Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

  • Cho, Sungback;Hwang, Okhwa;Park, Sungkwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1362-1370
    • /
    • 2015
  • This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (p<0.05) in CP 15% group among three CP levels. Relative abundance of Bacteroidetes phylum and bacterial genera including Leuconostoc, Bacillus, Atopostipes, Peptonphilus, Ruminococcaceae_uc, Bacteroides, and Pseudomonas was lower (p<0.05) in CP 15% than in CP 20% group. There was a positive correlation (p<0.05) between odorous compounds and bacterial genera: phenol, indole, iso-butyric acid, and iso-valeric acid with Atopostipes, p-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism.

Compositions of Fatty Acids, Inorganic Components and Volatile Organic Acids in Korean Valerian Roots (한국산 쥐오줌풀의 지방산, 무기성분 및 유기산 조성)

  • Choi, Young-Hyun;Cho, Chang-Hwan
    • Korean Journal of Medicinal Crop Science
    • /
    • v.2 no.2
    • /
    • pp.162-167
    • /
    • 1994
  • This study was carried out to investigate the compositions of fatty acids, inorganic components and volatile organic acids from Korean valerian roots, Valeriana fauriei var. dasycarpa Hara and Valeriana officinalis var. latifolia Miq. The contents of total lipids ranged from 3.7 % to 4.5% and the major fatty acids were linoleic, linolenic and palmitic acid. Ash contents ranged from 4.3% to 6.3%. and the contents of Na, Fe, Zn and Cu showed some quantitative differences depending upon grown region or species. Fourty components were identified from acidic fraction of dichloromethane extract of V. fauriei var. dasycarpa Hara, of which the major components were 3-methyl butanoic, dimethoxy-2-propenoic. 3, 4-dimethoxy benzoic and 3-methyl pentanoic acid.

  • PDF

The Effect of the Addition of Carbohydrate on the Concentration of Odorous Compounds in Pig Slurry (양돈 슬러리에 첨가된 발효탄수화물의 종류별 악취물질 농도 비교)

  • Hwang, Ok Hwa;Yang, Seung Hak;Jeon, Jung Hwan;Kwag, Jeong Hoon;Choi, Dong Yun;Yang, Seung Bong;Kim, Doo Hwan;Cho, Sung Back
    • Journal of Animal Environmental Science
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Slurry treatments included peanut shell, palm golden fiber, almond hull, which was added 2% of the amount of slurry, and non-treatment control (n=4 each group). Levels of odorous compounds were measured from the liquid slurry incubated in $20^{\circ}C$ for 2 wk in chamber whose structure is similar to slurry pit. Concentration of phenols and indoles was higher (p<0.05) in control (48.4, 4.0 ppm) compared to almond hull (31.5, 1.4 ppm) or palm golden fiber (29.1, 1.6 ppm) group. Short chain fatty acid (SCFA) level was lowest (p<0.05) in control (2,121 ppm) but highest in peanut shell group (3,640 ppm). Branched chain fatty acid (BCFA) concentration was highest (p<0.05) in peanut shell (296 ppm), but lowest in almond hull (90 ppm). Taken together, concentration of odorous compounds was decreased by addition of almond hull in pig slurry by which crude fiber and non-digestible fiber (NDF) may act as a carbon source.

A reduction in dietary crude protein with amino acid balance has no negative effects in pigs

  • Junyoung Mun;Habeeb Tajudeen;Abdolreza Hosseindoust;Sanghun Ha;Serin Park;Jinsoo Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.3
    • /
    • pp.493-503
    • /
    • 2024
  • The aim of this experiment was to evaluate the effects of low crude protein (CP) level with essential amino acids (AA) addition on growth performance, nutrient digestibility, microbiota, and volatile fatty acid composition in growing pigs. A total of 160 growing pigs (Landrace × Yorkshire × Duroc [LYD]; average initial body weight 16.68 ± 0.12 kg) were randomly allotted to one of the four treatments on the basis of initial body weight. A randomized complete block design was used to conduct this experiment in the Research Center of Animal Life Sciences at Kangwon National University. There were ten pigs/replicate with four replicates in each treatment. The treatments include; CON (Control, 17.2% dietary CP level), low protein (LP)-1.10 (15.7% dietary CP level + 1.10% lysine level), LP-1.15 (15.7% dietary CP level + 1.15% lysine level), LP1.2 (15.7% dietary CP level + 1.20% lysine level). The pigs fed CON and LP-1.2 diet showed greater final body weight than that of LP-1.1 diet (p < 0.05). Although average daily gain, average daily feed intake, and feed efficiency did not show any difference in phase 2 and 3, average daily gain and feed efficiency was significantly greater in CON and LP-1.20 in phase 1. However, the average daily feed intake did not show any difference during the experimental period. Isobutyric acid and isovaleric acid composition of LP treatments were lower than CON treatment in phase 2. Total branched chain fatty acid composition was significantly lower in LP treatment in phases 1 and 2. However, there was no significant difference among treatments in phase 3. The results of this study underscore the importance of AA supplementation when implementing a low-protein diet during the early growth phase (16-50 kg) in pigs.

Effect of Dietary Supplementation of Sodium Salt of Isobutyric Acid on Ruminal Fermentation and Nutrient Utilization in a Wheat Straw Based Low Protein Diet Fed to Crossbred Cattle

  • Misra, A.K.;Thakur, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.479-484
    • /
    • 2001
  • The effect of dietary supplementation of sodium salt of isobutyric acid in low protein (10% CP) wheat straw based diet on nutrient utilization and rumen fermentation was studied in ruminally fistulated male crossbred cattle. The study included a 7 day metabolism and a 3 day rumen fermentation trials. The cattle were distributed into two equal groups of 4 each. The animals of control group were fed a basal diet consisting of wheat straw, concentrate mixture and green maize fodder in 40:40:20 proportion whereas branched chain volatile fatty acid (BCFA) supplemented group received a basal diet + isobutyric acid at 0.75 percent of basal diet. The duration of study was 36 days. The feed intake between experimental groups did not differ significantly and the average total DMI (% BW) was 2.01 and $2.28kg\;day^{-1}$ in control and BCFA supplemented diets. The dietary supplementation of BCFA improved (p<0.05) the DM, OM, NDF and cellulose digestibility by 4.46, 6.63, 10.57 and 11.31 per cent over those fed control diet. The total N retention on BCFA supplementation was improved (p<0.01) due to decreased (p<0.05) urinary N excretion. The concentrations of ruminal total N was 37.07 and $34.77mg\;100ml^{-1}$ in control and BCFA fed groups, respectively. Dietary supplementation BCFA significantly (p<0.01) reduced the ruminal ammonia N concentration as compared to control and the mean values ($mg\;100ml^{-1}$) were 13.18 and 9.42 in control and BCFA fed groups. The total VFA concentration was higher (p<0.01) in BCFA supplemented group (101.14 mM) than the control (93.05 mM). Among the VFAs, the molar proportion of acetate was higher (p<0.01) in BCFA supplemented group (71.07 mM) as compared to control (64.98 mM). However, the concentration of propionate and butyrate remained unchanged. Amino acids composition of bacterial hydrolysates was similar in both the groups. Ruminal outflow rate of liquid digesta was higher (p<0.01) in BCFA fed group ($67.56l\;day^{-1}$) than control ($52.73l\;day^{-1}$). It is concluded that the dietary supplementation of Na-salt of isobutyric acid in low protein diet improved the nutrient utilization and ruminal fermentation characteristics.

Effect of Intraruminal Sucrose Infusion on Volatile Fatty Acid Production and Microbial Protein Synthesis in Sheep

  • Kim, K.H.;Lee, S.S.;Kim, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.350-353
    • /
    • 2005
  • Effects of sucrose supplement on the pattern of VFA production and microbial protein synthesis in the rumen were examined in sheep consuming basal diet of grass silage (2.5 kg fresh wt/d) that was provided in 24 equal meals each day by an automatic feeder. Four mature wethers were allocated to four experimental treatments in a 4${\times}$4 Latin square design with periods lasting 14 days. The treatments were (1) the basal diet, (2) supplemented with 150 g sucrose and 7.0 g urea, (3) 300 g sucrose and 13 g urea, and (4) 450 g sucrose and 20 g urea given as a continuous intraruminal infusion for 24 h. All infusions were given in 2 litres of aqueous solution per day using a peristaltic pump. The effect of sucrose level on rumen mean pH was significantly linear (p<0.01). There were not significant differences in the concentration of ammonia-N, total VFA and the molar proportions of acetate, propionate and butyrate with the level of sucrose infusion. The molar proportions of isobutyric acid (p<0.05) and isovaleric acid (p<0.001) were significantly reduced when the infused amount of sucrose was increased. The flow of microbial N was linearly (p<0.001) increased with sucrose and urea level. High levels of readily fermentable carbohydrate in a ration reduced the efficiency of microbial protein synthesis in the rumen. It was demonstrated that of the individual fatty acids, only the molar proportion of isovalerate showed a significant negative correlation (R2=$0.3501^{**}$) with the amount of microbial N produced and a significant positive correlation (R2=$0.2735^{**}$) with the efficiency of microbial growth.