• Title/Summary/Keyword: Branch flow

Search Result 449, Processing Time 0.025 seconds

Minimizing Total Completion Times in a Two-machine Flowshop Scheduling with Outsourcing Strategy allowed (아웃소싱 전략을 활용하는 두 단계 흐름생산라인에서 완료시간의 총합을 최소화하는 일정계획문제)

  • Yoo, Jaewook;Lee, Ik Sun
    • Korean Management Science Review
    • /
    • v.33 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • We treats a job scheduling in a 2-machine flow-shop problem with outsourcing strategy allowed. Jobs in the first machine are processed in-house or outsourced to the other companies. In this paper, all the considered jobs are determined to be in-house processed or outsourced. When a job is outsourced, then the firm should pay an outsourcing cost additionally. We want to minimize the sum of the outsourcing costs and the total completion times of finished jobs. In this paper, some solution properties are characterized, and then some heuristic algorithms and a branch-and-bound solution algorithm are derived. This paper evaluates finally the performance of the proposed algorithms during the numerical tests.

Eigenvalue Distribution Analysis Via UPFC for Enhancing Dynamic Stability Into the Multi-machine Power System (다기 전력시스템의 동적안정도 향상을 위해 UPFC 연계시 고유치 분포 해석)

  • 김종현;정창호;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.9
    • /
    • pp.487-492
    • /
    • 2003
  • This paper analyzes an eigenvalue distribution and enhancement of the small signal stabiligy when an Unified Power Flow Controller (UPFC) modeling is connected into the multi-machine power system. Recently a lot of attention has been paid to the subject of dynamic stability. It deals with analysis of eigenvalue sensitivities with respect to parameters of UPFC Controller and damping of interarea and local electromechanical oscillation modes using UPFC Controller. It provides an insight and understanding in the basic characteristics of damping effects of UPFC Controller and shows a very stable frequency response via UPFC in test model. The series branch of the UPFC is designed to damp the power oscillation during transients, while the shunt branch aims at maintaining the bus voltage and angle. Comprehensive time-domain simulation studies using PSS/E show that the proposed robost UPFC controller can enhance the small signal stability efficiently in spite of the variations of power system operating conditions.

Case of Improving Design by Using Analysis Model of Hydraulic System for Dental Chair (치과용 유니트체어 유압구동 시스템 해석모델을 활용한 개선설계 사례)

  • Dae Kyung Noh;Dong Won Lee;Taek June Kim;Joo Sup Jang
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • This study aims to develop a Korean dental chair hydraulic circuit by improving the existing equipment in order to localize foreign leading companies' products. The suggested Hydraulic circuit can be applicable to varied sectors where height and backrest angle control of chair-type equipment are required. The study followed the steps below. First, three kinds of foreign hydraulic circuits were analyzed and three kinds of Korean dental chair hydraulic circuits were suggested. Second, it was determined whether the three kinds of Korean hydraulic circuits operate normally through SimulationX, a software specialized in multi domain analysis, and the effectiveness of each circuit was examined.

Development of a numerical flow model for the multi-cylinder engine intake system (다기통 엔진 흡기시스템의 유동해석 모델개발)

  • Song, Jae-Won;Seong, Nak-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1921-1930
    • /
    • 1996
  • To design an optimum engine intake system, a flow model for the intake manifold was developed by the finite difference method. The flow in the intake manifold was one-dimensional, and the finite difference equations were derived from governing equations of flow, continuity, momentum and energy. The thermodynamic properties of the cylinder were found by the first law of thermodynamics, and the boundary conditions were formulated using steady flow model. By comparing the calculated results with experimental data, the appropriate boundary conditions and convergence limits for the flow model were established. From this model, the optimum manifold lengths at different engine operating conditions were investigated. The optimum manifold length became shorter when the engine speeds were increased. The effect of intake valve timings on inlet air mass was also studied by this model. Advancing intake valve opening decreased inlet air mass slightly, and the optimum intake valve closing was found. The difference in inlet air mass between cylinders was very small in this engine.

Treasury Management through Integrating Financial and Operational Flows by Information Technology (실물흐름을 반영한 IT 기반의 자금관리시스템: 웹케시의 '브랜치 솔루션' 사례)

  • Hahm, Yuk-Kun;Lee, Seog-Jun;Kwon, Taek-Keun;Kim, Jong-Moo
    • Information Systems Review
    • /
    • v.13 no.3
    • /
    • pp.27-46
    • /
    • 2011
  • Many business managers claim that treasury management is their leading concern. Managing cash flows is the center of treasury management. However, in reality, companies has experienced the difficulty in monitoring and controling this flow initiated by business transactions. To resolve this problem, Webcash Inc. developed an innovative systems called Branch Solution. Branch Solution stands in between banking systems and a company's ERP system to connect them. This system provides the company with an ability to control the financial flow in accordance with the physical flow of materials. Due to this solution many companies accomplish a high efficiency and visibility in their cash management. This study analyses a treasury management case from the perspective of supply-chain processes integration.

Experimental Approach for Estimation of Hydrodynamic Force Acting on a Submerged Streamlined Body Translating in a One-end-opened Cylindrical Tube (수중운동체의 실린더 관 내부 이동시 작용력 예측에 대한 실험적 접근)

  • Yeo, Dong-Jin;Kim, Yeon-Gyu;Kim, Dong-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.203-211
    • /
    • 2012
  • The main object of this experiment is to estimate the hydrodynamic forces acting on a submerged streamlined body placed in a one-end-opened cylindrical tube moving with certain translational velocity. The best experimental design for this object is mimicking real situation, however sizes of model body and cylinder tube are just the same as those of real, for avoiding scale effects, mimicking real situation is not realizable. Hence, in this experiment, target body and cylindrical tube were designed to be towed with varying body position relative to cylindrical tube. For measuring hydrodynamic forces and flow velocity in the cylindrical tube, six one-component load cells and several one-hole Pitot tubes were used. Several conditions were checked with various end-plates those had different opening areas. Experiment results show that forces and flow velocity had different tendency with those expected, and the presence of a end-plate slows down the flow velocity in the cylindrical tube and affects pressure field in the tube to push the model submerged body forward of the tube. This tendency grows with decreasing opened area.

측방향흐름이 있는 만곡부 흐름의 해석

  • Park, Jae-Hyeon;Yun, Seong-Yong
    • Water for future
    • /
    • v.25 no.3
    • /
    • pp.87-96
    • /
    • 1992
  • Hydraulic characteristics such as velocity, surface level and flow pattern in the curved channel are analyzed by model experiment, where model is scaled down by 1:20 for prototype channel containing side branch and curved section. The withdrawal of channel flow from channel is analyzed to find the effect on the curve section. The numerical scheme for shallow water equation using ADI method is verified through the comparison of hydrauric characteristics by experiment with that by numerical analysis in the side section of model channel. The comparison of numerical results with experimental data shows that velocity, surface level and flow pattern agree well for overall channel. Because fo the relative contraction of cross section in the curved section caused by rectangular system, the velocity calculated by numerical analysis is faster in curved section than that from experiment, which can be improved using finer spatial grid in curved section. The characteristics of the curved section such that the surface level is higher in the outer zone of curved section and the velocity is faster in the inner zone are well simulated by both experiment and numerical analysis. The effect of side branch reaches within the zone of the curved section.

  • PDF

Computational Study on Design of the AIG for the Enhancement of Ammonia Injection in the SCR System (SCR 시스템 내 암모니아 분사 균일도 개선을 위한 AIG 설계에 관한 해석적 연구)

  • Seo, Moon-Hyeok;Chang, Hyuksang
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.410-418
    • /
    • 2012
  • The performance of the ammonia injection gun (AIG) used for maximizing the utilization of reducing agent in the selective catalytic reduction (SCR) system is decided by several parameters such as the pattern of flow distribution, geometry of the air distribution manifold (ADM) and the array and geometry of nozzles. In the study, the uniformity of jet flows from the nozzles in AIG was analyzed statistically by using the computational fluid dynamics (CFD) method to evaluate the role of design parameters on the performance of the SCR system. The uniformity of jet flows from the nozzles is being deteriorated with increasing the supplying flow rate to the AIG. Distribution rates to each branch pipe become lower with decreasing distance to the header, and flow rates from nozzle are also reduced with decreasing distance to the header. The uniformity of jet flows from nozzles becomes stable significantly when the ratio of summative area of nozzles to each sectional area of the branch pipe is below 0.5.

Numerical analysis of flow characteristics at the bifurcation channel by changing of discharge ratio using TELEMAC-2D (TELEMAC-2D를 적용한 개수로 분류부 유량비 변화에 의한 흐름특성 분석)

  • Jung, Daejin;Jang, Chang-Lae;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • This study investigates the flow characteristics, such as velocity distributions, size and location of recirculation zone, longitudinal flow change rates, and bifurcation discharge ratio in the bifurcation channel by TELEMAC-2D, a 2D numerical model. The numerical model is validated by previous experimental results and the numerical results are in relatively good agreement with the experimental results, such as the water surface elevation and velocity distribution in the channels. As the inertial force and moment in the main channel decrease, the bifurcation discharge ratio increases, and the relative high velocity distribution becomes wider and the reverse velocity of the main stream decreases in the branch channel. As the bifurcation discharge ratio increases, the size of the recirculation zone in the branch channel decreases and it can be more clearly calculated by determining the point where the longitudinal froude number $Fr{\approx}0$ as well as drawing the distribution of the streamline distribution.

CFD - Mature Technology?

  • Kwak, Do-Chan
    • Proceedings of the KSME Conference
    • /
    • 2005.11a
    • /
    • pp.257-261
    • /
    • 2005
  • Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This Is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.

  • PDF