• Title/Summary/Keyword: Branch circuit

Search Result 129, Processing Time 0.022 seconds

Fault Location for Incomplete-Journey Double-Circuit Transmission Lines on Same Tower Based on Identification of Fault Branch

  • Wang, Shoupeng;Zhao, Dongmei;Shang, Liqun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1754-1763
    • /
    • 2017
  • This paper analyses the characteristics of incomplete-journey double-circuit transmission lines on the same tower formed by single-circuit lines and double-circuit lines, and then presents a fault location algorithm based on identification of fault branch. With the relationship between the three-phase system and the double-circuit line system, a phase-mode transformation matrix for double-circuit lines can be derived. Based on the derived matrix, the double-circuit lines with faults can be decoupled, and then the fault location for an incomplete-journey double-circuit line is achieved by using modal components in the mode domain. The algorithm is divided into two steps. Firstly, the fault branch is identified by comparing the relationships of voltage amplitudes at the bonding point. Then the fault location, on the basis of the identification result, is calculated by using a two-terminal method, and only the fault distance of the actual fault branch can be obtained. There is no limit on synchronization of each terminal sampling data. The results of ATP-EMTP simulation show that the proposed algorithm can be applied within the entire line and can accurately locate faults in different fault types, fault resistances, and fault distances.

A new lossless snubber for DC-DC converters with energy transfer capability

  • Esfahani, Shabnam Nasr;Delshad, Majid;Tavakoli, Mohhamad Bagher
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.385-391
    • /
    • 2020
  • In this paper, a new passive lossless snubber circuit with energy transfer capability is proposed. The proposed lossless snubber circuit provides Zero-Current Switching (ZCS) condition for turn-on instants and Zero-Voltage Switching (ZVS) condition for turn-off instants. In addition, its diodes operate under soft switching condition. Therefore, no significant switching losses occur in the converter. Since the energy of the snubber circuit is transferred to the output, there are no significant conduction losses. The proposed snubber circuit can be applied on isolated and non-isolated converters. To verify the operation of the snubber circuit, a boost converter using the proposed snubber is implemented at 70W. Also, the measured conducted Efficiency Electromagnetic Interference (EMI) of the proposed boost converter and conventional ones are presented which show the effects of proposed snubber on EMI reduction. The experimental results confirm the presented theoretical analysis.

A new interleaved high step up converter with low voltage stress on the main switches

  • Tohidi, Babak;Delshad, Majid;Saghafi, Hadi
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.521-531
    • /
    • 2020
  • In this paper, a new interleaved high step-up converter with low voltage stress on the switches is proposed. In the proposed converter, soft switching is provided for all switches by just one auxiliary switch, which decreases the conduction loss of auxiliary circuit. Also, the auxiliary circuit is expanded on the converter with more input branches. In the converter all main switches operate under zero voltage switching condition and auxiliary switch operate under zero current switching condition. Because of the interleaved structure, the reliability of converter increases and input current ripples decreases. The clamp capacitor in the converter not only absorb the voltage spikes across the switch due to leakage inductance, but also improve voltage gain. The proposed converter is fully analyzed and to verify the theoretical analysis, a 100 W prototype was implemented. Also, to show the effectiveness of auxiliary circuit on conduction EMI, EMI of the proposed converter comprised with hard switching counterpart.

Static Switch Controller Based on Artificial Neural Network in Micro-Grid Systems

  • Saeedimoghadam, Mojtaba;Moazzami, Majid;Nabavi, Seyed. M.H.;Dehghani, Majid
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1822-1831
    • /
    • 2014
  • Micro-grid is connected to the main power grid through a static switch. One of the critical issues in micro-grids is protection which must disconnect the micro-grid from the network in short-circuit contingencies. Protective methods of micro-grid mainly follow the model of distribution system protection. This protection scheme suffers from improper operation due to the presence of single-phase loads, imbalance of three-phase loads and occurrence of power swings in micro-grid. In this paper, a new method which prevents from improper performance of static micro-grid protection is proposed. This method works based on artificial neural network (ANN) and able to differentiate short circuit from power swings by measuring impedance and the rate of impedance variations in PCC bus. This new technique provides a protective system with higher reliability.

Overlapped Electromagnetic Coilgun for Low Speed Projectiles

  • Mohamed, Hany M.;Abdalla, Mahmoud A.;Mitkees, Abdelazez;Sabery, Waheed
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.322-329
    • /
    • 2015
  • This paper presents a new overlapped coilgun configuration to launch medium weight projectiles. The proposed configuration consists of a two-stage coilgun with overlapped coil covers with spacing between them. The theoretical operation of a multi-stage coilgun is introduced, and a transient simulation was conducted for projectile motion through the launcher by using a commercial transient finite element software, ANSOFT MAXWELL. The excitation circuit design for each coilgun is reported, and the results indicate that the overlapped configuration increased the exit velocity relative to a non-overlapped configuration. Different configurations in terms of the optimum length and switching time were attempted for the proposed structure, and all of these cases exhibited an increase in the exit velocity. The exit velocity tends to increase by 27.2% relative to that of a non-overlapped coilgun of the same length.

Study on Characteristics of Leakage Current and Insulation Resistance for a Circuit According to Load Types (부하종류에 따른 회로의 누설전류 및 절연저항 특성 연구)

  • Han, Kyung-Chul;Choi, Yong-Sung
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.364-369
    • /
    • 2019
  • The ratios of compliant branch circuit of leakage current and insulation resistance were 68.4% and 90.8%, respectively at the lamp load, 64.6% and 96.5% at the heat load, 86.7% and 88.9% at the power load. Limit of residual current of the zero phase secondary current value at the zero phase primary current was 100 A when rated primary current 400 A more than. The reason why the ratio of branch circuit of the leakage current was less than the ratio of compliant branch circuit of the insulation resistance might be that the leakage current includes the capacitive leakage current and the zero phase current.

Hybrid LVDC Circuit Breakers (저압직류용 하이브리드 차단기)

  • Hyo-Sung, Kim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.489-497
    • /
    • 2022
  • This work investigates the commutation characteristics of the current flowing through an electrical-contact-type switch to the semiconductor switch branch during the breaking operation of hybrid DC switchgear. A simple, reliable, low-cost natural commutation method is proposed, and the current commutation characteristics are analyzed in accordance with the conduction voltage drop of the semiconductor switch branch through experiments. A prototype 400 V/10 A class natural commutation type hybrid DC switchgear is set up. Its performance is verified, and its characteristics are analyzed.

Multiple-Mode Structural Vibration Control Using Negative Capacitive Shunt Damping

  • Park, Chul-Hue;Park, Hyun-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1650-1658
    • /
    • 2003
  • This paper deals with a novel shunt circuit, which is capable of suppressing multimode vibration amplitudes by using a pair of piezoceramic patches. In order to describe the characteristic behaviors of a piezoelectric damper connected with a series and a parallel resistor-negative capacitor branch circuit, the stiffness ratio and loss factor with respect to the non-dimensional frequency are considered. The mechanism of the shunt damper is also described by considering a shunt voltage constrained by shunt impedance. To obtain a guideline model of the piezo/beam system with a negative capacitive shunting, the governing equations of motion are derived through the Hamilton's principle and a piezo sensor equation as well as a shunt-damping matrix is developed. The theoretical analysis shows that the piezo/beam system combined with a series and a parallel resistor-negative capacitor branch circuit developed in this study can significantly reduce the multiple-mode vibration amplitudes over the whole structural frequency range.

ECAP for the direct input of bipolar transistor (트랜지스터 회로의 직접입력을 위한 ECAP 프로그램)

  • 안수길
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.2
    • /
    • pp.24-35
    • /
    • 1972
  • A modification of ECAP compiling program for electronic circuit analysis is attempted in order to permit the global input of the parameters of each bipolar transistor in one card. A considerable machine time reduction is achieved as the new system permits the treatment of three cards concerning base branch, collectior branch and transfer characteristics in one, thus avoiding the necessity of calling several subroutines to confirm the idenfity of branches and their relations. It also permits one to make the data cards (descriving the circuit) without transforming the circuit into the otherwise necressary equivalent circuit.

  • PDF

Case of Improving Design by Using Analysis Model of Hydraulic System for Dental Chair (치과용 유니트체어 유압구동 시스템 해석모델을 활용한 개선설계 사례)

  • Dae Kyung Noh;Dong Won Lee;Taek June Kim;Joo Sup Jang
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • This study aims to develop a Korean dental chair hydraulic circuit by improving the existing equipment in order to localize foreign leading companies' products. The suggested Hydraulic circuit can be applicable to varied sectors where height and backrest angle control of chair-type equipment are required. The study followed the steps below. First, three kinds of foreign hydraulic circuits were analyzed and three kinds of Korean dental chair hydraulic circuits were suggested. Second, it was determined whether the three kinds of Korean hydraulic circuits operate normally through SimulationX, a software specialized in multi domain analysis, and the effectiveness of each circuit was examined.