• 제목/요약/키워드: Braking temperature

검색결과 127건 처리시간 0.022초

다아나모 실험을 통한 Al-MMC 브레이크 드럼의 제동성능 평가 (The Braking Performance Evaluation of Al-MMC Brake Drum Using the Dynamometer)

  • 윤영식;유승을;한범석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.733-736
    • /
    • 2002
  • This study was carried out to investigate the braking performances associated with the friction coefficients and temperature fluctuations. Friction coefficient stability and maximum temperature of brake drums, made of an Al-MMC and conventional cast iron, were tested by the inertial brake dynamometer during 15 braking operations. Also the temperature distribution was analyzed by the finite element analysis(FEA). In this experiment, both lower temperature rise near the drum surface and less variation of friction coefficient, compared to those of cast iron, were observed with Al-MMC drums during braking operations.

  • PDF

동력차용 브레이크슈의 제동성능에 관한 실험적 연구 (Experimental study on the braking performance of a brake shoe for power car)

  • 권석진;구병춘
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.87-92
    • /
    • 2000
  • In this paper, we investigated the braking performance of a composite brake shoe for power car. Laboratory bench test and field tests were carried out to characterize the braking performance by the parameters such as friction coefficient, wear rate, braking temperature and stopping distance. Density distribution was found to have a significant influence on the wear rate. The composite brake shoe with even density distribution showed better braking performance. The braking performance of a composite brake shoe was also compared with that of a cast iron brake shoe which is currently being used. The result indicated the performance of the composite brake shoe is better than the cast iron brake shoe.

  • PDF

열차 제어의 연속 제동시 마찰특성과 온도분포 (The Frictional Characteristic and Distribution of Temperature in The Continuous Braking Effort on The Train Control)

  • 이시우;최경진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.101-106
    • /
    • 2005
  • During braking at a train, thermal energy is generated due to the frictions between disk and lining and wheel and shoe. In general, the braking transfers the kinetic energy into thermal energy. Therefore. the frictional characteristics are varied according to the braking force, the thermal resistance, and the thermostable, etc. Using a Dynamo testing we have studied the frictional characteristics and the thermal distribution to investigate a stable speed and to improve the testing method through comparing and analysing in the measurement or the thermocouple temperature and infrared camera.

  • PDF

통기식 디스크 브레이크의 방열 성능에 관한 수치적 연구 (A Numerical Study of Thermal Performance in Ventilated Disk Brake)

  • 김진택;백병준
    • Tribology and Lubricants
    • /
    • 제17권5호
    • /
    • pp.358-364
    • /
    • 2001
  • Disk brake system transforms a large amount of kinetic energy to thermal energy in a short time. As the size and speed of automotive increases in recent years, the disk brakes absorbs more thermal energy. And this thermal energy can cause an unacceptable braking performance due to the high transient temperature, that is attained at the friction surface of brake disk and pad. Although these high temperatures are one of the biggest problems. In this study, the overall thermal behavior of ventilated disk brake system was investigated by numerical method. The 3-Dimensional unsteady model was simulated by using a general purpose software package “FLUENT” to obtain the temperature distributions of disk and pad. The model includes the more realistic braking method, which repeats braking and release. The effects of several parameters such as the repeated braking, inlet air velocity and thermal conductivity on the temperature distribution were investigated.

철도차량용 제동디스크의 온도 변화 따른 재질의 특성 변화에 관한 연구 (A Study on the Change of Mechanical Properties due to the Temperature Effect for the Braking Disc)

  • 김재훈;최경진;이찬우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.398-403
    • /
    • 2005
  • This study investigates the change of the temperature and mechanical properties of the braking disk for the railway vehicle. The average temperature is measured about $100^{\circ}C$ and the maximum temperature is measured over $200^{\circ}C$ by non-contact sensor from Seoul to Chun-an. In the $20^{\circ}C-300^{\circ}C$, the 0.2% offset yield strengths of the disk (GC25-30 material) are a little down to the reference value, but the linear relation of tensile test result is not find from the linear change of temperature. However, JIC values have the inverse proportion to the temperature, and the JIC value at $200^{\circ}C$ decrease 30.55% from the JIC. value of the room temperature. This result means that the crack length on the braking disk is rapidly increase at $200^{\circ}C$.

  • PDF

대형 상용차용 브레이크 드럼의 온도 분포 및 열응력에 관한 유한요소 해석 (FEM Analysis on Temperature Distribution and Thermal Stress of a Brake Drum for Large Commercial Vehicle)

  • 김호경;이영인;주세민
    • 한국안전학회지
    • /
    • 제21권6호
    • /
    • pp.7-13
    • /
    • 2006
  • A transient heat transfer and thermal stress analysis for a brake drum of commercial vehicles have been performed by ANSYS code in the cases of single braking and the repeated braking condition. The temperature and thermal stress distributions in the brake drum under various braking conditions were obtained using a two-dimensional axisymmetric model. In case of deceleration of 0.3G with an initial vehicle speed of 60km/h, the maximum temperature in the drum was $87.6^{\circ}C$ after braking application. The maximum stress of 78.7MPa in the drum occurred at the intersection between the flange and hat under a condition in which repeated 15 cycles braking with an initial vehicle speed of 60km/h and a deceleration of 0.3G is applied to according to KS R1129. The maximum stress value is much lower than the yield strength of drum material(FC250).

철도차량용 제동디스크의 온도 변화 측정 및 물성치 변화에 관한 연구(I) (A study on the Mechanical Properties of the Braking Disk due to the Temperature Change(I))

  • 김재훈
    • 한국철도학회논문집
    • /
    • 제8권3호
    • /
    • pp.222-227
    • /
    • 2005
  • This study investigates the change of the temperature and mechanical properties of the braking disk for the railway vehicle. The average temperature is measured about $100^{\circ}C$ and the maximum temperature is measured over $200^{\circ}C$ by non-contact sensor from Seoul to Chun-an. As a result of measuring, we determine the temperature of test(tensile and J-integral) at $20^{\circ}C,\;100^{\circ}C,\;200^{\circ}C$ and $300^{\circ}C$. In the test, the material values are decreased by the increasing of the temperature. But ratio of decreasing is the largest at $200^{\circ}C$, the tensile test value is decreased about $10\%$ and the J-integral test value is decreased $30\%$. The mechanical properties of this material are mostly changed at $200^{\circ}C$.

온도변화에 따른 철도차량용 제동디스크의 물성치 변화에 관한 연구 (A Study on the Mechanical Properties of the Braking Disk due to the Change of Temperature)

  • 김재훈;강부병;김형진;석창성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.383-388
    • /
    • 2003
  • This study investigates the change of the temperature and mechanical properties of the braking disk for the railway vehicle. The average temperature is measured about $100^{\circ}C$ and the maximum temperature is measured over $200^{\circ}C$ by non-contact sensor from Seoul to Chunan. In the $20^{\circ}C-300^{\circ}C$, the $0.2\%$ offset yield strengths of the disk (GC25-30 material) are a little down to the reference value, but the linear relation of tensile test result is not find from the linear change of temperature. However, $J_{IC}$ values have the inverse proportion to the temperature, and the $J_{IC}$ value at $200^{\circ}C$ decrease $30.55\%$ from the $J_{IC}$. value of the room temperature. This result means that the crack length on the braking disk is rapidly increase at $200^{\circ}C$

  • PDF

열차 제어의 연속 제동시 마찰특성과 온도분포 (The Friction Characteristic and Distribution of Temperature in The Continuous Braking Effort on The Train Control)

  • 최경진;이시우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.55-58
    • /
    • 2005
  • During braking at a train, thermal energy is generated due to the frictions between disk and lining and wheel and shoe. In general, the braking transfers the kinetic energy into thermal energy. Therefore, the frictional characteristics are varied according to the braking force, the thermal resistance, and the thermostable, etc. Using a Dynamo testing we have studied the frictional characteristics and the thermal distribution to investigate a stable speed and to improve the testing method through comparing and analysing in the measurement of the thermocouple temperature and infrared camera.

  • PDF

제동 패턴을 고려한 드럼 브레이크의 열적 거동 특성에 대한 연구 (A Study on the Thermal Behavior Characteristic of Drum Brake considering Braking Patterns)

  • 이계섭;손성수;양기현
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.145-154
    • /
    • 2006
  • Each part of drum brake system is loaded by continual mechanical force and thermal force every time of braking, so enough strength and stability are required. Thermal characteristic is one of the important factors in drum brake systems design. This paper presents the thermal performance such as temperature distribution and thermal contact stress of drum brake system considering several braking patterns; 80th heat braking test mode, heat fade braking test mode, general road mode, steep slope road mode and off road mode. Transient heat transfer analysis and Thermo elastic contact analysis is executed to obtain the temperature distribution, and to evaluate thermal stress of drum brake by using ABAQUS/Standard code. This procedure of analysis can effectively be used to improve the quality problem of brake system and to get design guideline of the new product.