• Title/Summary/Keyword: Braking pressure

Search Result 134, Processing Time 0.027 seconds

A Study on the Improvement of Release Application Characteristics of Pneumatic Brakes for Freight Train

  • Nam, Seong-Won;Kim, Hyeong-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.776-784
    • /
    • 2002
  • We have performed experimental studies for the improvements of pneumatic brake systems of freight trains. Currently, most of the freight trains operated by the Korean National Railroad have either empty-load or diaphragm type brake systems. In this study, appropriate methods that the air pressure characteristics in both type of brake systems are in accordance with each other have been investigated. We have also performed running tests using a 30 car-train set to design optimum capacity of a quick release valve. The test results show that the quick release valve is considerably effective in shortening the release time of the diaphragm type brake system. In the case of a normal brake application, the diaphragm type brake system with the quick release valve reduces the release time to 34% of that of the system without the quick release valve. This release time is almost equivalent to that of the empty-load type brake system. Accordance of braking performance in different types of brake systems in a train set is expected to prevent wheel flats and to reduce maintenance costs.

Dynamic Analysis on the Energy Regenerative Brake of Hydraulic Driven Systems (유압 구동계 에너지 제생 브레이크의 동특성 해석)

  • 이재구
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.137-146
    • /
    • 2000
  • The hydraulic energy regnerative brake systems is introduced in this work. An accumulator stores kinetic energy during braking action, and the stored energy is used in a following acceleration action. The dynamic model of the brake system is derived for computer simulation study, and the Runge-Kutta numerical integration method is applied to the simulation work. Since the model contains several unknown parameters, these were determined by data which had been proceeded. Through a series of computer simulation , dynamic performance of the energy regenerative brake system is compared with that of a conventional system in which a conventional brake circuit is used. A series of test is carried out in the laboratory. The dynamic characteristics of the hydraulic motor system, such as the surge pressure and response time, are investigated in both brake action and acceleration action.

  • PDF

Maneuver Analysis of Full-Vehicle Featuring Electrorheological Suspension and Electrorheological Brake (ER 현가장치 및 ER 브레이크를 적용한 전체차량의 거동분석)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1125-1130
    • /
    • 2007
  • This paper presents a maneuver analysis of a full-vehicle featuring electrorheological (ER) suspension and ER brake. In order to achieve this goal, an ER damper and an ER valve pressure modulator are devised to construct ER suspension and ER brake systems, respectively. After formulating the governing equations of the ER damper and ER valve pressure modulator, they are designed and manufactured for a middle-sized passenger vehicle, and their field-dependent characteristics are experimentally evaluated. The governing equation of motion for the full-vehicle is then established and integrated with the governing equations of the ER suspension and ER brake. Subsequently, a sky-hook controller for the ER suspension and a sliding mode controller for the ER brake are formulated and implemented. Control performances such as vertical displacement and braking distance of vehicle are evaluated under various driving conditions through computer simulations.

  • PDF

The Effect of Engine Tilting Conditions on the Oil Supply System (엔진 경사 조건이 오일 공급 시스템에 미치는 영향)

  • 전문수;김숭기;박병완
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.37-43
    • /
    • 2004
  • Engine lubrication system is generally affected by vehicle driving conditions; acceleration, braking deceleration, and cornering. The oil supply system such as oil pan, baffle plate, and oil pick-up pipe should be optimized to cope with severe driving conditions. The main purpose of this paper is to understand the effect of the engine tilting angle on the oil supply system using engine tilting test rig. For the purpose, the oil pressure fluctuation and oil aeration in the main gallery are measured at various engine tilting angles. In addition, the oil flow is visualized by using transparent oil pan to investigate the cause of the formation of oil aeration. The test results show there is a strong correlation between the main gallery oil pressure fluctuation and oil aeration. It is also found that the visualization technique is helpful to stabilize the oil supply system at severe driving conditions.

A Study on the Estimation of Frictiom Coefficient between Tire and Road Surface Using Running Car data (실차 데이터를 이용한 차륜과 노면간의 마찰계수 예측에 관한 연구)

  • 우관제;산기준일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.207-213
    • /
    • 1999
  • In this study, the possibility of estimation of friction coefficient between tire and road surface using running car data are checked. To get necessary data, such as tire and car velocities and braking force, a test car is driven with certain magnitude of decelerations from pre-set initial velocities to stop . The data are used to estimate friction coefficient with property chosen parameters , e.g,, driving stiffness, pressure distribution functions, etc. Experimental results show that running data car be used with properly chosen parameters to estimate friction coefficient.

  • PDF

자동차에 사용되는 금속성 마찰재와 유기질 마찰재의 마찰 특성에 관한 연구

  • Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.47-52
    • /
    • 1997
  • Friction properties of two different types of automotive friction materials were studied. They were nonasbestos organic and semi-metallic friction materials. The two friction materials were tested using an inertia brake dynamometer to investigate friction stability, rooster tailing phenomena, temperature change of riction couples during drags and stops. Results showed that the level of the friction force is strong function of time, temperature, and speed regardless of the type of friction materials. The change of triction coefficient during braking (rooster tailing) was pronounced when the applied pressure was increased in the case of semi-metallic friction materials. This phenomena appears strongly dependent on the applied pressure, initial brake temperature and ingredients in the friction material.

  • PDF

Sliding Mode Control of Electric Booster System (전동 부스터의 슬라이딩 모드 제어)

  • Yang, I-Jin;Choi, Kyu-Woong;Huh, Kun-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.519-525
    • /
    • 2012
  • Electric brake booster systems replace conventional pneumatic brake boosters with electric motors and rotary-todisplacement mechanisms including ECU (Electronic Control Unit). Electric booster brake systems require precise target pressure tracking and control robustness because vehicle brake systems operate properly given the large range of loading and temperature, actuator saturation, load-dependent friction. Also for the implement of imbedded control system, the controller should be selected considering the limited memory size and the cycle time problem of real brake ECU. In this study, based on these requirements, a sliding mode controller has been chosen and applied considering both model uncertainty and external disturbance. A mathematical model for the electric booster is derived and simulated. The developed sliding mode controller considering chattering problem has been compared with a conventional cascade PID controller. The effectiveness of the controller is demonstrated in some braking cases.

Capacity Design of Accumulator in Hydraulic Hybrid Drive Brake System (유압 하이브리드 구동 시스템의 축압기 용량 설계)

  • 이재구;김정현;김성동
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.15-21
    • /
    • 2001
  • An accumulator in hydraulic systems stores kinetic energy during braking action, and then that controls hasty surge pressure. An energy recovery system using accumulator seems to be advantageous for ERBS due to its high energy density. This study suggests a method to decide suitable accumulator volume for ERBS. The method is based upon energy conservation between kinetic energy of moving inertia and elastic energy of accumulator. The energy conversion was analyzed and a simple formula was derived. A series of computer simulation was done to verify effectiveness of the formula. The results of the simulation work were compared with those of experiments and these results show that the proposed design is effective for decision accumulator volume in ERBS.

  • PDF

Capacity Design of Accumulator in Hydraulic Regenerative Brake System (유압 재생 브레이크 시스템의 축압기 용량 설계)

  • 이재구;이재천;김정현;김성동
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.104-113
    • /
    • 2002
  • An accumulator in hydraulic systems stores kinetic energy during braking action and then that controls hasty surge pressure. An energy recovery system using accumulator seems to be advantageous far ERBS due to its high energy density. This study suggests a method to decide suitable accumulator volume far ERBS. The method is based upon energy conservation between kinetic energy of moving inertia and elastic energy of accumulator. The energy conversion was analyzed and a simple formula was derived. A series of computer simulation was done to verify effectiveness of the formu1a. The results of the simulation work were compared with those of experiments and these results show that the proposed design is effective far decision of accumulator volume in ERBS.

Failure Studies on the Wear Scars of an Automotive Tire (차량용 타이어의 마멸손상에 관한 고장사례 연구)

  • Lee, II-Kwon;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.23 no.5
    • /
    • pp.228-233
    • /
    • 2007
  • This paper presents the case studies on the friction related wears of an automotive tire, which is strongly connected to the safety and comfort of a driver during a running of a car. Wear scars of a tire tread are affected by various causes such as an air pressure, a wheel alignment, a driving speed, road conditions, starting and braking habits of a driver. The data were collected from used tires for a replacement at the car service center. Most of the wear problems came from the improper repair and adjustment of revolving components, which cause an unbalanced wear of a tread part of a tire. Thus, the regular checking of a tire radically reduces the wear scars of a tire and may increase a driving safety and a fuel economy of a car and a wear life of a tire.