• Title/Summary/Keyword: Braking System

Search Result 752, Processing Time 0.031 seconds

Frictionally Excited Thermoelastoplastic instability in sliding contact system (미끄러짐 마찰 접촉하는 시스템에서의 열탄소성 불안정성 연구)

  • Ahn, Seong-Ho;Jang, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.144-149
    • /
    • 2008
  • A transient finite element simulation is developed for the two-dimensional stationary elastoplastic layer between sliding layers, to investigate thermoelastoplastic instability(TEPI) due to frictional heating in the material. The analysis will show some differences between the case of thermoelastic instability and TEPI, especially according to the contact pressure above yield stress. A transient behavior of contact pressure is captured to explain the behavior of thermoplasticity of contact with different sliding velocity. The instability of contact pressure in the long range of braking time will be explored to understand the generation mechanism of hot spots.

  • PDF

A Study on Estimating Characteristics of ABS Using High Frequency PWM Control (고주파수 PWM 제어를 이용한 ABS의 특성 평가에 관한 연구)

  • Kim, Byeong-Woo;Lee, Yong-Joo;Park, Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.69-74
    • /
    • 2004
  • In general the surge pressure generated in hydraulic systems causes noise, vibration and odd effect to the system. To reduce the surge pressure, high frequency PWM control of 20KHz was attempted. To estimate the braking noise caused by surge, a vehicle equipped with on-board ABS hydraulic modulator has been experimented with respect to the various breaking condition. Thorough this experiments, it was found that breaking noise has been reduced using high frequency PWM control method compare with low frequency method. To evaluate high frequency control m practice, including verification of general functionality, EMI tests was experimented. Its was found that it is necessary to have the solution to electromagnetic interference(EMI) generated by switching elements.

Dynamic Performance Estimation and Optimization for the Power Transmission of a Heavy Duty Vehicle (중부하 차량 동력전달계의 성능평가와 최적화)

  • 조한상;임원식;이장무;김정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.63-74
    • /
    • 1996
  • Automatic transmission for heavy duty vehicles is a part of the power pack which includes steering and braking systems. This transmission in different from the one for passenger car. Therefore, in order to understand the trend of the important design parameters, maneuverability, acceleration performance and maximum speed, we need to analyze the total performance characteristics of the power transmission systems. In this study, modeling of the automatic transmission in heavy duty vehicle is carried out and the performance analysis method is presented. Results can be used for performance estimation data in the analysis for several combination method which determines the optimal parameters on the basis of penalty functions and weightings. And the estimation method of the important performance parameters such as engine inertia or power loss of engine by experiments is presented.

  • PDF

Braking characteristics analysis of the magnetic actuator brake system(MABS) for emergency a car (비상 제동 기능을 지닌 전자력 브레이크 시스템(MABS)의 제동 특성 해석)

  • Choi, Sang-Min;Kang, Jong-Ho;Kim, Tae-Young;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.849-850
    • /
    • 2006
  • 최근 자동차 브레이크의 전기적 시스템에 대한 연구가 활발히 진행되고 있다. 이와 관련하여 본 논문에서는 자기 엑추에이터 브레이크 시스템(MABS)을 분석하였다. 주행 도중 차량의 이상 및 긴급 상황 발생시 MABS는 전기적 메커니즘을 통해 차량을 제동할 수 있다. MABS는 회전하고 있는 휠에 초당 수십회 작용하여 점차적이고 효율적으로 휠을 제동한다. 이는 제동시간의 단축과 안정성에 있어 향상된 성능을 보인다. 본 연구에서는 유한요소법을 적용한 시뮬레이션을 통해 MABS의 동작 특성을 분석하고, 실제 자동차의 상황을 가정하여 제동하는데 소요되는 시간 및 작동 회수 등에 대해 분석하였다.

  • PDF

The selection of ATO profile on precision stop controller for urban railway (도시 철도의 정밀 정차 제어에 있어서의 ATO 프로파일의 선택)

  • 이태연;김용민;박준영;박재홍;한성호;박현준;안태기;온정근;백종현
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.251-258
    • /
    • 1999
  • This paper is mainly concerned with the development of the ATO(Automatic Train Operation) profile on precision stop controller. The ATO system is used for automatic or driverless operation of a train. In this paper, the algorithm for ATO controller is presented and three speed profiles on precision stop controller are compared. One profile is based on the maximum jerk control, another on the constant control input, and the third on the optimal control for the minimum energy consumption. These profiles are simulated and analyzed in view of the stop time, control input, jerk, propulsion and braking.

  • PDF

Test of the Series Hybrid Propulsion Power Unit of a Bimodal Tram (바이모달 트램의 직렬형 하이브리드 추진 전원장치 시험)

  • Bae, Chang-Han;Chang, Se-Ky;Mok, Jai-Kyun;Lee, Kwang-Won;Kim, Yong-Tae;Bae, Jong-Min
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.930-939
    • /
    • 2009
  • A bimodal tram is being developed to combine the flexibility of a bus with the punctuality of a train. The propulsion system is a series hybrid type using a set of CNG engine generator and Li-polymer battery. This paper presents the experimental results of the series hybrid propulsion power unit using an active loader which can simulate powering and regenerative braking conditions of the propulsion equipments continuously. The power sharing scheme between PWM converter and a battery pack has been observed. The measurement results of DC link voltage and SOC(State Of Charge) of battery pack are presented.

  • PDF

Proposed DC-link Circuit with Dynamic Regenerative Braking of High Power AC Motor Drive System (고용량 교류전동기 구동시스템의 회생제동을 포함한 직류링크회로 제안)

  • Kim, Ji-Su;Son, Ji-Hun;Kim, Tae-Woo;Kang, Jun-Seok;Choi, Myeong-Soo;Kim, Tae-Woong
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.102-103
    • /
    • 2019
  • 본 논문에서는 3상 다이오드정류회로로 구성된 AC-DC 컨버터, 그리고 인버터로 구성된 고용량 교류전동기의 구동시스템에 있어서 돌입전류제한용 저항과 직류링크 과전압방지용 회생저항의 2가지 기능을 하나로 묶은 하이브리드 저항을 이용한 직류링크회로와 이에 대한 시퀀스제어를 제안한다. 이를 통해 기존 직류링크회로에 비하여 가격경쟁력을 갖추고 돌입전류 및 과전압을 효율적으로 제어할 수 있도록 하고, 시뮬레이션해석을 통하여 이에 대한 유효성을 검증한다.

  • PDF

An actively controlled prototype for educational buildings

  • Casciati, S.;Faravelli, L.
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.105-109
    • /
    • 2020
  • The authors address the problem of ameliorating or updating existing educational buildings. This building typology is quite sensitive to social and media pressure, mainly when accidents have occurred nearby. When a building is classified as unsatisfactory, the current code requirements oblige one to re-design the building with significant penalty factors in the resistance values. Often the only solution is to destroy the existing facility and to build a new one. When attempting to preserve the existing building, higher levels of safety are demanded by the society and this can only be achieved by innovative system architectures. The authors propose and discuss a prototype that can be easily adopted to retrofit small educational buildings as the ones common in small municipalities. The higher performance is pursued by a special design of the control scheme, with new control devices and special control laws.

Creepage Model Analysis for a Tilting Train (틸팅열차의 크리피지 모델 해석)

  • Kang, Chul-Goo;Kim, Ho-Yeon;Lee, Nam-Jin;Kim, Min-Soo;Goo, Byeong-Choon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.231-239
    • /
    • 2009
  • Traction and braking of trains are due to the rolling contact of the wheel on the rail, and the rolling contact is fundamental to an understanding of the behavior of the railroad system. The way in which the forces are transmitted in the rolling contact is complex and highly nonlinear. This paper describes a rolling contact theory, a creepage model between wheel and rail, and a dynamic model of the tilting train Hanvit-200. The validity of the model is verified through simulation study using Simulink.

Mechanical Characteristics of Automobile Brake Pads (자동차 브레이크 패드의 기계적 특성 연구)

  • Shin, Jaeho;Kim, Kyungjin;Kang, Woojong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • Brake pads are a component of disc brake system of automobile and consist of steel backing plates and friction material facing the disk brake rotor. Due to the repeated sliding forces and torque in vehicle braking, friction performance of brake pads are ensured. Futhermore, the brake pad is one of major tuning components in aftermarket, mechanical characteristics of the brake pad are necessary to evaluate for establishing the certification standards of tuning components. This study had performed the five specimen tests for friction coefficients and wear loss rates according to the SAE test specification. Using the instrumented indentation method, yield strength and tensile strength were measured. Friction coefficients, 0.386 - 0.489, and wear loss rates, 1.0% - 3.7% are obtained. The range of yield strength and tensile strength are 21.4 MPa - 105.3 MPa and 39.5 MPa - 176.4 MPa respectively.