• 제목/요약/키워드: Braking Motion

검색결과 63건 처리시간 0.03초

전(全)방향 충돌 회피를 위한 액츄에이터 최적 분배 알고리즘 (Unified Control of Independent Braking and Steering Using Optimal Control Allocation Methods for Collision Avoidance)

  • 김규원;김범준;이경수
    • 자동차안전학회지
    • /
    • 제5권2호
    • /
    • pp.11-16
    • /
    • 2013
  • This paper presents a unified control algorithm of independent braking and steering for collision avoidance. The desired motion of the vehicle in the yaw plane is determined using the probabilistic risk assessment method based on target state estimation. For the purpose of coordinating the independent braking and steering, a non-linear vehicle model has been developed, which describes the vehicle dynamics in the yaw plane in both linear and extended non-linear ranges of handling. A control allocation algorithm determines the control inputs that minimize the difference between the desired and actual vehicle motions, while satisfying all actuator constraints. The performance of the proposed control algorithm has been investigated via computer simulations conducted using the vehicle dynamics software CARSIM and Matlab/Simulink.

지반운동을 공간변화를 고려한 고속철도 장대레일의 응력해석 (Rail-Stress of High-Speed Railway Bridges using tong Rails and subjected to Spatial Variation of Ground Motion Excitations)

  • Ki-Jun Kwon;Yong-Gil Kim
    • 한국안전학회지
    • /
    • 제18권2호
    • /
    • pp.132-138
    • /
    • 2003
  • 고속철도교량에서 장대레일의 사용은 연결부 근처에서 레일과 교량상판사이의 비선형 거동으로 인하여 부가적인 응력을 유발한다. 고속철도 교량의 지진응답해석에서, 구조물응답은 지반운동특성에 매우 영향을 많이 받으므로, 지반운동의 위치에 따른 변화가 구조물의 응답에 영향을 미치게 되고, 그 결과는 레일에 응력을 유발하게 된다. 또한 고속철도에서 사용지진 수준의 지진발생 시에 열차의 긴 제동거리가 필요하므로 열차의 안전한 정지를 확보하는 것이 요구된다. 이러한 관점에서 장대레일에 의해 부가적으로 발생하는 응력, 지반운동의 공간변화에 대한 구조물 응답의 영향, 그리고 안전하게 정지하기 위해 필요한 열차의 제동거리 등의 사항이 레일의 응력해석에 고려될 필요가 있다. 본 논문에서는 지진하중을 받는 고속철도교량의 장대레일 응력해석을 위하여 제동하중, 지반운동의 공간적 변화, 그리고 레일의 재료 비선형을 고려한 시간영역에서의 비선형 동적해석방법을 개발하고 적용하였다. 제시된 방법을 한국고속철도의 특정부지에 적용하여 지반운동의 공간변화에 따른 응답의 타당성을 보였다.

차동 제동을 이용한 조향 제어 시뮬레이션 (Simulation of Vehicle Steering Control through Differential Braking)

  • 제롬살랑선네;윤여흥;장봉춘;이성철
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.65-74
    • /
    • 2002
  • This paper examines the usefulness of a Brake Steer System (BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems (ITS). In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model will be validated using the equations of motion of the vehicle. Then a controller will be developed. This controller, which will be a PID controller tuned by Ziegler-Nichols, will be designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

운전자의 운전수행과 관련된 지각적, 인지적 특성분석 및 그 특성이 운전에 미치는 영향분석 (Analysis of Perceptual , Cognitive, and Motoral Characteristics and their Effects on Driving Performance)

  • 유완석;손정현;김광석;이재식
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.222-230
    • /
    • 1999
  • A fixed type driving simulator is constructed with a car body, beam projector, operation software , driving scenario, and audio equipments. With the simulator, the cognitive effects of fatigue due to two hour continuous driving of a straight road is investigated . The effects of alcohol on driving performance is also studied. The braking operation and lane keeping performance due to fatigue and alcohol are investigated. Changes of vehicle motion due to these effects are verified by computer simulation.

  • PDF

HUMAN-IN-THE-LOOP EVALUATION OF A VEHICLE STABILITY CONTROLLER USING A VEHICLE SIMULATOR

  • Chung, T.;Kim, J.;Yi, K.
    • International Journal of Automotive Technology
    • /
    • 제5권2호
    • /
    • pp.109-114
    • /
    • 2004
  • This paper presents a closed-loop evaluation of the Vehicle Stability Control (VSC) system using a vehicle simulator. Human driver-VSC interactions have been investigated under realistic operating conditions in the laboratory. Braking control inputs for vehicle stability enhancement have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. A driving simulator has been validated using actual vehicle driving test data. Real-time human-in-the loop simulation results in realistic driving situations have shown that the proposed controller reduces driving effort and enhances vehicle stability.

능동 휠 토크 제어시스템 설계를 위한 제동력${\cdot}$구동력 배분제어에 관한연구 (A Study on Braking and Driving Force Distribute Control for Active Traction Control System)

  • 박중현;김순호
    • 한국정보통신학회논문지
    • /
    • 제9권6호
    • /
    • pp.1402-1406
    • /
    • 2005
  • 차량 안정성에 관한연구는 전자제어시스템의 발달과 더불어 급속한 발전을 이룩하였다. 이러한 장치들은 ABS, TCS등이 있고, 현재 활발히 연구되고, 실용화 단계에 있는 VDC이 있다. 그러나 이러한 장치들은 제동력이나 엔진 토크의 감소로 제어되므로 운전자의 의지와는 상관이 없는 차량의 운동이 발생하게 된다. 본 논문에서는 ATC의 동적성능 해석을 수행 하였다.

주행 시뮬레이터를 이용한 차량 안정성 제어기의 성능 검증 (Evaluation of Vehicle Stability Control System Using Driving Simulator)

  • 정태영;이건복;이경수
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.139-145
    • /
    • 2004
  • This paper presents human-in-the-loop evaluations of vehicle stability control(VSC) system using a driving simulator. A driving simulator which contains full vehicle nonlinear model is evaluated by using actual vehicle test data on the same driving conditions. Braking control inputs for Vehicle Stability Control system have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. Closed-loop simulation results at realistic driving situations have shown that the proposed controller reduces driving effort of a driver and enhances stability of a vehicle.

고속열차하중 하의 강합성형 철도교의 동적거동에 관한 연구 (A Study on the Dynamic Behavior of Steel Composite railway Bridges subject to High Speed Train)

  • 장승필;곽종원;하상길;김성일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.548-555
    • /
    • 1998
  • The influences of high speed train on the dynamic responses of steel composite railway bridges are investigated. The bridge system which has two Ⅰ-girder and several cross beams is modeled with plate and frame elements. With assumption of concrete slabs ate fully connected with steel girders, the offset between slabs and girders is modeled using rigid link. The track system is modeled using beams on elastic foundation theory. And, the TGV train is modeled in 2-dimension considering bouncing and pitching motion. And, braking action of vehicle is considered using speed dependent braking function. To investigate the behavior of bridges due to moving trains, parametric studies are performed.

  • PDF

Simulation of Vehicle Steering Control through Differential Braking

  • Jang, Bong-Choon;Yun, Yeo-Heung;Lee, Seong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권3호
    • /
    • pp.26-34
    • /
    • 2004
  • This paper examines the usefulness of a Brake Steer System(BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems(ITS). In order to help the car to turn, a yaw moment control was achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS was used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model was validated using the equations of motion of the vehicle. Then a controller was developed. This controller, which is a PID controller tuned by Ziegler-Nichols, is designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

틸팅차량용 제동 디스크의 트라이볼로지 특성 연구 (Tribological Characteristics of proposed brake disk for Tilting train)

  • 박경식;강성웅;조정환;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.491-497
    • /
    • 2005
  • Brake system is indispensible functional part to the transportation machines such as railroad cars, and all of industrial machines. It is mechanical element to stop the movement or slow the speed, transforming kinetic energy of motion object into thermal energy through solid friction. According that recently the railroad cars have become high-speed, the technique in braking domain to secure the overall braking effort is making rapid progress. In particular, material development and manufacturing process are so important to secure friction performance, which is the core in braking performance of mechanical brake units. Wear of brake disk could mainly result in the diminishment of its life span due to thermal cracking, so the endurance against high temperature is required. On the other hand, in this case, the problem is that the side wear of pad, relative material is slightly increased because of enlargement of plastic deformation. It is necessary, therefore, to develop a disk material that will be used in the Tilting System mechanical brake units. The purpose of this paper is to make a study prior to developing brake disk of Tilting Train travelling at 200km/h and to propose the component of brake disk. Accordingly, I will conduct sufficient researches on technical documents of brake disk, that are basic documentations, analyze an impact on components, and further, considering braking degree of train, study for the basic proposal on brake disk's component of the train travelling at 200km/h, which has relatively minor influence of heat stress and maintains the friction. In this respect, I would like to investigate friction characteristics between disk and relative friction material via Test on some possible test segments, analyze and propose friction performance, temperature impact and so forth coming from the contact with pad, relative material to demonstrate the friction characteristics.

  • PDF