• Title/Summary/Keyword: Brake timing

Search Result 48, Processing Time 0.02 seconds

Effect of Brake Timing on Joint Interface Efficiency of Aluminum Composites During Friction Welding (알루미늄 복합재료의 마찰용접시 브레이크 타이밍이 접합계면 효율에 미치는 영향)

  • Kim Hyun-Soo;Park In-Duck;Shinoda Takeshi;Kim Tae-Gyu
    • Journal of Powder Materials
    • /
    • v.13 no.1 s.54
    • /
    • pp.62-67
    • /
    • 2006
  • Friction welding of $Al_2O_3$ particulate reinforced aluminum composites was performed and the following conclusions were drawn from the study of interfacial bonding characteristics and the relationship between experimental parameters of friction welding and interfacial bond strength. Highest bonded joint efficiency (HBJE) approaching $100\%$ was obtained from the post-brake timing, indicating that the bonding strength of the joint is close to that of the base material. For the pre-brake timing, HBJE was $65\%$. Most region of the bonded interface obtained from post-brake timing exhibited similar microstructure with the matrix or with very thin, fine-grained $Al_2O_3$ layer. This was attributed to the fact that the fine-grained $Al_2O_3$ layer forming at the bonding interface was drawn out circumferentially in this process. Joint efficiency of post-brake timing was always higher than that of pre-brake timing regardless of rotation speed employed. In order to guarantee the performance of friction welded joint similar to the efficiency of matrix, it is necessary to push out the fine-grained $Al_2O_3$ layer forming at the bonding interface circumferentially. As a result, microstructure of the bonded joint similar to that of the matrix with very thin, fine-grained $Al_2O_3$ layer can be obtained.

Effects of the Intake Valve Timing and the Injection Timing for a Miller Cycle Engine

  • Han, Sung-Bin;Chang, Yong-Hoon;Choi, Gyeung-Ho;Chung, Yon-Jong;Poompipatpong, Chedthawut;Koetniyom, Saiprasit
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.32-38
    • /
    • 2010
  • The objective of the research was to study the effects a Miller cycle. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. Miller Cycle without supercharging can increase brake thermal efficiency 1.08% and reduce brake specific fuel consumption 4.58%. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency.

Development and performance analysis of a Miller cycle in a modified using diesel engine

  • Choi, Gyeung-Ho;Poompipatpong, Chedthawut;Koetniyom, Saiprasit;Chung, Yon-Jong;Chang, Yong-Hoon;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.198-203
    • /
    • 2008
  • The objective of the research was to study the effects of Miller cycle in a modified using diesel engine. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. The results of engine performances and emissions are present in form of graphs. Miller Cycle without supercharging can increase brake thermal efficiency and reduce brake specific fuel consumption. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency. Retard ignition timing can reduce $NO_x$ emissions while maintaining high efficiency.

Numerical study on effect of intake valve timing on characteristics of combustion and emission of Natural gas-Diesel engine (발전용 천연가스-디젤 혼소 엔진의 흡기밸브 개폐시기에 따른 연소 및 배출 특성에 대한 수치 해석적 연구)

  • Jung, Jaehwan;Song, Soonho;Hur, Kwang beom
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.29-36
    • /
    • 2016
  • In this study, diesel/natural gas dual-fuel engine was studied numerically using DoE method. The engine is CI engine for power generation and modelled by 1-D simulation GT-power. The combustion and emission characteristics were analyzed as a function of IVO, IVC and the ratio of natural gas to total fuel enegy. As the proportion of natural gas increases, the BSFC(Brake specific fuel consumption) is increased and BSNOx(Brake specific NOx) is decreased. If specific valve timing to improve the BSFC is applied to the engine, the BSFC is decreased by 1% and simultaneously BSNOx is decreased by 36%.

A Study on the Performance of the MPI Gasoline Engine with Gasoline-Ethanol Blends (가솔린-에탄을 혼합연료 사용시의 MPI 가솔린 기관의 성능에 관한 연구)

  • 윤건식;신승한
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.92-102
    • /
    • 2001
  • The effect of ethanol-blending on the performances of the MPI gasoline engine was examined. The experiments were carried out for the stoichiometric conditions under MBT spark timing over various operating conditions. The blending rate of ethanol were determined as 10 to 30 percent according to the analysis of the properties of blended fuels. The engine with ethanol-blended fuels showed improved performances such as brake torque, brake power, brake thermal efficiency and exhaust emissions compared with those of pure gasoline over most operating conditions. Though the brake specific fuel consumption was increased by ethanol-blending due to their lower heating values, the increasing rates of the brake specific fuel consumption were limited to the half of the blending rates owing to the increase in the thermal efficiency.

  • PDF

Evaluation of temperature effects on brake wear particles using clustered heatmaps

  • Shin, Jihoon;Yim, Inhyeok;Kwon, Soon-Bark;Park, Sechan;Kim, Min-soo;Cha, YoonKyung
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.680-689
    • /
    • 2019
  • Temperature effects on the generation of brake wear particles from railway vehicles were generated, with a particular focus on the generation of ultrafine particles. A real scale brake dynamometer test was repeated five times under low and high initial temperatures of brake discs, respectively, to obtain generalized results. Size distributions and temporal patterns of wear particles were analyzed through visualization using clustered heatmaps. Our results indicate that high initial temperature conditions promote the generation of ultrafine particles. While particle concentration peaked within the range of fine sized particles under both low and high initial temperature, an additional peak occurred within the range of ultrafine sized particles only under high initial temperature. The timing of peak occurrence also differed between low and high initial temperature conditions. Under low initial temperature fine sized particles were generated intensively at the latter end of braking, whereas under high initial temperature both fine and ultrafine particles were generated more dispersedly along the braking period. The clustered correlation heatmap divided particle sizes into two groups, within which generation timing and concentration of particles were similar. The cut-off point between the two groups was approximately 100 nm, confirming that the governing mechanisms for the generation of fine particles and ultrafine particles are different.

Development of a Solenoid Control Technique for the Suppression of Brake System Noise and Vibrations of the Elevator Traction Machine (엘리베이터 권상기 브레이크 시스템 소음 및 진동 감소를 위한 솔레노이드 구동 제어기법 개발)

  • Yang, Dong-Ho;Kim, Ki-Young;Heo, Seok;Kwak, Moon-K.;Lee, Jae-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.65-71
    • /
    • 2012
  • This paper is concerned with the suppression of brake system noise and vibrations of the elevator traction machine by means of a solenoid control technique. The solenoid is used to hold the brake shoe, which is then released by turning the solenoid off. Since the brake shoe hits the brake disk, vibrations and noise occur. We develop the solenoid control technique based on the dynamic behavior of the solenoid. The theoretical model for the solenoid is modeled by using linear magnetic principles. The solenoid model was then combined with the vibration model to simulate the brake system vibrations. The simulation results show that the additional pulse input to the solenoid can decrease the vibrations. The timing of the applied pulse is determined by observing the current. The experimental results show that both the vibrations and noise can be substantially decreased, which validates the approach developed in this paper.

  • PDF

Development of a Solenoid Control Technique for the Suppression of Noise and Vibrations of the Brake System of Elevator Traction Machine (엘리베이터 권상기 브레이크 시스템의 소음 및 진동 감소를 위한 솔레노이드 구동 제어기법 개발)

  • Yang, Dong-Ho;Kim, Ki-Young;Heo, Seok;Kwak, Moon-K.;Lee, Jae-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.451-458
    • /
    • 2012
  • This paper is concerned with the suppression of noise and vibrations of the brake system of elevator traction machine by means of a solenoid control technique. The solenoid is used to hold the brake shoe, which is then released by turning the solenoid off. Since the brake shoe hits the brake disk, vibrations and noise occur. We developed the solenoid control technique based on the dynamic behavior of the solenoid. The theoretical model for the solenoid is modeled by using linear magnetic principles. The solenoid model was then combined with the vibration model to simulate the vibrations of brake system. The simulation results show that the additional pulse input to the solenoid can decrease the vibrations. The timing of the applied pulse is determined by observing the current. The experimental results show that both the vibrations and noise can be substantially decreased, which validates the approach developed in this paper.

The Effect of Fuel Injection Timing on the Combustion and Emission Characteristics of a Natural Gas Fueled Engine at Part Loads

  • Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1013-1018
    • /
    • 2008
  • For a sequential port fuel injection natural gas engine, its combustion and emission characteristics at low loads are crucial to meet light duty vehicle emission regulations. Fuel injection timing is an important parameter related to the mixture formation in the cylinder. Its effect on the combustion and emission characteristics of a natural gas engine were investigated at 0.2 MPa brake mean effective pressure (BMEP)/2000 rpm and 0.26 MPa BMEP/1500 rpm. The results show that early fuel injection timing is beneficial to the reduction of the coefficient of variation (COV) of indicated mean effective pressure (IMEP) under lean burn conditions and to extending the lean burn limits at the given loads. When relative air/fuel ratio is over 1.3, fuel injection timing has a relatively large effect on engine.out emissions. The levels of NOx emissions are more sensitive to the fuel injection timing at 0.26 MPa BMEP/1500 rpm. An early fuel injection timing under lean burn conditions can be used to control engine out NOx emissions.

The Characteristics of Ozone Formation from a Gaseous Fueled SI Engine with Various Operating Parameters (여러 가지 운전조건에 따른 가스연료엔진 오존발생량 연구)

  • 김창업;강건용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.86-92
    • /
    • 2003
  • To analyze the characteristics of ozone formation, measurements of the concentrations of individual exhaust hydrocarbon species have been made under various engine operating parameters in a 2-liter 4-cylinder engine for natural gas and LPG. Tests were performed at constant engine speed, 1800 rpm for two compression ratios of 8.6 and 10.6, with various operating parameters, such as excess air ratio of 1.0~1.6, bmep of 250~800 na and spark timing of BTDC 10~$55^{\circ}$. It was found that the natural gas gave the less ozone formation than LPG in various operating conditions. This was accomplished by reducing the emissions of propylene($C_3H_6$), which has relatively high maximum incremental reactivity factor, and propane($C_3H_8$) that originally has large portion of LPG. In addition, the natural gas show lower values in the specific reactivity and brake specific reactivity. Higher compression ratio of the test engine showed higher non methane HC emissions. However, specific reactivity value decreased since fuel species of HC emissions increase. brake specific reactivity showed almost same values under high bmep, over 500kPa for both fuels. This means that the increase of non methane HC emissions and the decrease of specific reactivity with higher bmep affect each other simultaneously. With advanced spark timing, brake specific reactivity values of LPG were increased while those of natural gas showed almost constant values.