• Title/Summary/Keyword: Brake factor

Search Result 85, Processing Time 0.027 seconds

Analysis of Multiple Factor of the Eddy Current Brake for Railway Application (철도차량용 와전류 브레이크의 다중 인자 분석)

  • Lee, Chang-Mu;Park, Hyun-Jun;Cho, Sooyoung;Lee, Ju;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1385-1390
    • /
    • 2015
  • This paper is analysis of multiple factor that should be considered in the design of an eddy current brake used as auxiliary brake system. The eddy current brake is a brake that generates a braking torque in a rotational direction opposite to the direction of the rotor by using a time-varying magnetic flux. The eddy current brake has the advantage of being able to take high current densities because this is used for a short period of time. Also, the eddy current brake is influenced by multiple factor such as number of slots, teeth width, coating thickness, air-gap length and so on. Therefore the eddy current brake was designed for use in railway application in consideration of the operation region and critical parameters.

Design and Performance Study of Brake System for Korean High Speed Rail (한국형 고속전철의 제동시스템 설계 및 성능 연구)

  • 박광복;김현철
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.338-348
    • /
    • 1998
  • The study was carried out about the design and the performance study of brake system for Korean High Speed Train of maximum operating speed of 350km/h. The brake system was studied to two parts the function of brake system and the performance of brake system base on Korean-TGV. According to the simulation of brake system, the train should be provided the eddy current brake system for maximum operating speed of 350km/h. The eddy current brake system take charge of about 31% on normal condition and about 22% on emergency by condition. The performance study of brake system would be continued for definition of adhesion factor un friction factor assumed to analysis and simulation.

  • PDF

A Study of Brake Force Detection Characteristics for Field Operation of ISO Brake Tester (ISO 제동시험기 실증운영을 통한 제동력 검출 특성에 관한 연구)

  • KWON, Kenan;GU, Youngjin;BAE, Jinmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.13-24
    • /
    • 2018
  • According to DEKRA (a Germany Certification and Inspection Agency)'s accident rate analysis by vehicle defect factor, as a result of analysis of the causes of accidents by flaws, it was found that braking devices accounted for 41%. Defects in the braking system are closely related to the accident, so it is very important to find faulty brking systems to ensure safety. The EU and USA uses ISO brake tester and the Korea is brake teater is first introduse in Japan for vehicle inspection and maintanance. KOTSA introduce the ISO brake tester in order to promote the advanced standardization of the inspection equipment and inspection tecnology, and examined the detection characteristics and applied it to the improvement direction of the brake tester to secure the driving safety.

Experimental Analysis on Brake Squeal Noise Due to Disk Misalignment (디스크 정렬불량에 기인한 브레이크 스퀼소음의 실험해석)

  • 박주표;최연선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.118-124
    • /
    • 2004
  • To investigate the mechanics of brake squeal noise, the sound and vibration of an actual brake system was measured using a brake dynamometer. The experimental results show that disk run-out due to the misalignment of brake disk varies with brake line pressure and becomes the important factor of brake squeal noise generation. Also, it was confirmed that the frequency of the squeal noise equals to the natural frequency of the disk bending mode.

Analytical study to the Brake Lever in Basic Brake System for Railway Vehicle (철도차량용 기초제동장치의 제동레버 강도에 대한 해석적 연구)

  • Park, Su-Myung;Park, Jae-young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.624-629
    • /
    • 2016
  • A brake lever in a basic railway brake system is an important safety device that delivers braking force from the brake cylinder to the brake pad. The safety guidelines for designing rolling stock only qualitatively describe that the brake lever should have sufficient strength. Each train has a different type of brake lever. One brake lever that was designed with a factor of safety of 1.27 has failed, so the material was changed to increase the strength. Therefore, the stress distribution and weak points of the lever were identified by theoretical analysis. and structural analysis. Different brake lever designs were examined for KTX high-speed trains, which have a split-type structure, as well as for electric locomotives, which use an electric multiple unit (EMU) with a unity-type structure. A fracture test was also done to look at the relationship between the vertical stress and the bending stress during braking. The results were used to find a safety factor to apply to each train and suggest quantitative minimum guidelines. We also looked at changing the unity-type EMU brake lever to the split type under the same conditions and analyzed how much the design change affected the factor of safety.

Stress and temperature analysis of a drum brake using FEM (유한요소법을 이용한 드럼브레이크의 응력 및 온도 해석)

  • 함선균;이기수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.707-710
    • /
    • 2001
  • Brakes are one of the important safety parts in cars. The requirements of brakes in performance, in comfort, and working lifetime are high. This paper presents the static analysis on the stress and temperature of a automotive drum brake. The particular interest is the distribution of the contact pressure between brake lining and drum. The problems to be solved are the effects of friction coefficient, actuation force, temperature, and brake component's stiffness. The contact problem includes friction, and is solved using the ABAQUS.

  • PDF

Brake Squeal Noise Due to Disk Misalignment (디스크 정렬불량에 기인한 브레이크 스퀼소음)

  • Park, Ju-Pyo;Choi, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1690-1695
    • /
    • 2003
  • In order to investigate the mechanism of brake squeal noise, the sound and vibration of an actua1 brake system were measured using a brake dynamometer. The experimental results show that disc run-out varies with brake line pressure and the factor of squeal generation is the run-out due to the misalignment of brake disk. A three degrees of freedom friction model is developed for the disk brake system where the run-out effect and nonlinear friction characteristic are considered. The results of numerical analysis of the model agree well with the experimental results. Also, the stability analysis of the model was performed to predict the generation of brake squeal due to the design parameter modification of brake systems. The results show that the squeal generation depends on the nm-out rather than the friction characteristic between the pad and the disk of brake.

  • PDF

A study on the characteristics of friction in automotive brake lining (자동차용 브레이크 라이닝의 마찰특성에 관한 연구)

  • 정화영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.56-65
    • /
    • 1986
  • This paper theoretically analyzed the relations between the out-put braking torque and the wheel cylinder pressure in the leading-trailing drum brake for heavy duty truck as the characteristics of friction in break lining, comparing with the results derived from full-scale inertial brake dynamometer test in actual braking condition to develop reliable brake system in extensive using conditions. The main results obtained are as follows; 1) The characteristic curve representing the relations between BEF (Brake Effectiveness Factor) and Friction coefficient derived from theoretical analysis are consistent with the experimental results of dynamometer test. 2) According to the results of dynamometer test, the friction coefficient of brake lining is subject to initial brake speed and the actual using temperature in brake system.

  • PDF

A Study on the Squeal Noise Instability Analysis on Caliper Brake (캘리퍼 브레이크 스퀼 소음의 불안정성 해석에 관한 연구)

  • Lee, Junghwan;Kim, Seonghwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.957-965
    • /
    • 2013
  • This paper deals with analytical methods for low frequency and high frequency brake squeal noise on brake-rear caliper. In order to improve low frequency and high frequency squeal noise, we take survey caliper bracket shape parameters and housing shape parameters. Besides, using the combination of bracket and housing parameter were surveyed. Thus, using the combination of bracket Alt_05 and housing Alt_45 specifications, instability analysis and brake dynamo test were carried out. Based upon the two models, low and high frequency squeal noise of base model were improved. But, for 6.0 kHz frequency noise, which is not improved, it needs to additionally study on instability analysis and combination of the other brake components.

Optimal Design of Ventilated Disc Brake Rotor (벤틸레이티드 디스크 브레이크 로터의 최적설계)

  • Lee, Su-Gi;Seong, Bu-Yong;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.593-602
    • /
    • 2000
  • The shape optimization is performed to minimize the judder of ventilated disc brake rotor that is induced by the thermal deformation of the disc. A three-dimensional finite element is developed to analyze the coupled system of temperature and displacement field, and the thermal conductivity and mechanical stiffness matrices are simultaneously taken into account. To reduce computing time, an equivalent heat transfer rate is introduced approximating the heat transfer rate on the disc surface. A deformation factor is introduced to describe the thermal deformation causing the judder. The deformation factor is chosen as an objective function in the optimization process. Consequently an optimum design is then performed minimizing the deformation factor with the design variables of the shape of the disc. The optimum design procedure presented in this study is proven to be an effective method of minimizing the judder, and it reduces the thermal deformation by 23% of the initial geometry.