• Title/Summary/Keyword: Brake dynamometer

Search Result 114, Processing Time 0.029 seconds

Numerical and Experimental Analysis for Disc Brake Squeal Induced by Caliper Mode (캘리퍼 모드에 의한 디스크 브레이크 스퀼 시험 및 해석)

  • Choi, Hoil;Kang, Jaeyoung;Gil, Hojong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1351-1358
    • /
    • 2014
  • This study numerically simulates brake squeal and validates it experimentally by using a lab-scaled brake dynamometer. The system frequencies of the disc brake are traced with respect to the brake pressure by using a modal test and FEM. Then, the squeal frequencies measured from the brake dynamometer are found to correspond to the brake system mode with the dominant displacement of the caliper and pad. Furthermore, a complex eigenvalue analysis conducted using the finite element model confirms that the caliper mode generating the rotational displacement of the pad becomes unstable owing to the negative friction-velocity slope.

Study on Performance Experiment and Analysis of Aluminum Disc Brake (알루미늄 디스크 브레이크의 성능 실험 및 해석에 관한 연구)

  • Ryu, Mi-Ra;Lee, Dae-Hee;Lee, Seong-Beom;Park, Jeong-Ho;Shim, Jae-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-68
    • /
    • 2013
  • The present research aims to develop aluminum disc brakes to replace existing cast iron disc brakes in automobiles. The foundation for developing an aluminum disc is laid by investigating the performance characteristics of existing cast iron disc brakes and comparing those characteristics with those of aluminum disc brakes. This study involves FEM thermal/structural analysis of disc materials and experimental tests using a brake dynamometer. The results of this study show that, aluminum discs have not only better thermal/mechanical properties than existing cast iron discs, including better heat, wear, and crack resistance, but also that aluminum discs. Weigh less than existing cast iron discs, which results in improved maneuverability. Aluminum discs will become a more essential part of automobiles as electric cars become the major means of transportation.

A Study on the Analysis of Squeal Noise for Brake Design (저소음 브레이크 설계를 위한 스퀼 소음 해석기법 연구)

  • Kim, Chan-Jung;Lee, Dong-Won;Lee, Bong-Hyun;Na, Byung-Chul;Kim, Hyun-Chul;Kwon, Seong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.830-839
    • /
    • 2006
  • The phenomenon of squeal noise in the disk brake system has been, and still is, a. problem for the automotive industry. Extensive research has been carried out in an attempt to understand the mechanism that causes squeal noise and In developing design procedures to reduce squeal noise to make vehicles more comfortable. In this paper, the study on the analysis of squeal noise is performed by using computer aided engineering to design the anti-squeal noise disk brake system. The first part describes the chassis dynamometer and the testing procedure, and second part explains the finite element model and the complex eigenvalue analysis. Finally, it is shown that the proposed squeal noise analysis could be useful to investigate the design parameters that affect the squeal noise characteristics.

Linearity study for the field coil current and the load of eddy current dynamometer (Eddy current 동력계의 부하와 와전류의 직진성 관련 연구)

  • 문병수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.66-72
    • /
    • 2000
  • Commercial eddy current dynamometers control the torque of ratating body (poer supply machine) with the field coil current being operated as a braking force. In this paper, we studied about the relation between the field coil current and the torque load of eddy current dynamometer. By the torque measuring analysis of eddy current dynamometer, it is linear relation between the brake force measured from the torque meter (e.g. load cell, strain gage or spring balance etc.) which is installed at the case of dynamometer and the multiply of shaft rpm by the square of field coil current (N$\times$Ia2). To prove the relation, it was experimented and showed that the torque operated by the rotating body can be measured with the shaft rpm and the field coil current of eddy current dynamometer. This result shows a possibility that eddy current dynamometer can measures the torque of rotating body without special torque measuring devices.

  • PDF

The Optimal Design of Suspension Module for Brake Judder Reduction (브레이크 저더 저감을 위한 전달계 최적 설계)

  • Kim, Jung-Hoon;Yoo, Dong-Ho;Kang, Yeon-June
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1213-1218
    • /
    • 2007
  • The brake judder comes from non-uniformities in the tire/wheel assembly caused by mechanical effects such as a brake torque variation (BTV). A disc thickness variation (DTV) related with the kinematic behavior of the disc was investigated a main source of BTV. In this study, a dynamic model with brake corner assembly of full vehicle using MSC.ADAMS was correlated by experiment of judder phenomenon. Judder was generated and correlated systematically by judder experiment in chassis and brake dynamometer from variation in the thickness of the disc. Also it has been found a judder transfer path and variation of the braking pressure. Through analysis of transfer function and movement of subsystem caused by BTV generation, design parameters have been found. Based on the results obtained from parameter study of suspension module, the effective design process and developed model with brake corner assembly was suggested for vibration reduction of steering wheel caused by the judder phenomenon.

  • PDF

A study on the development of a Fe-based brake lining for Passenger car (객차용 Fe계 브레이크 라이닝 개발)

  • 최경진;이동형
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.258-265
    • /
    • 2000
  • This study is to develop a Fe-based disc brake tinning with sponge structure for passenger car of 150km/h train and to concept design with 3 groove type for brake disc reducing hot hair-crack and certainly friction coeifficient. The developping brake linning would be to presumption of thermal stress Max.5.53k9/m0 of the 3 groove type. and It is stable friction coeifficient and wear rate on the Full Scale Brake dynamometer. So 3 groove type must be reduced to hot stress between Brake disc and Linning and Friction temperature is reduced about 20$^{\circ}C$

  • PDF

Eddy current brake type dynamometer (와류제동형동력계)

  • 성찬용
    • 전기의세계
    • /
    • v.17 no.3
    • /
    • pp.62-63
    • /
    • 1968
  • 전동기의 특성측정법은 여러가지가 있으나 소형전동기의 부하시험을 하고저 할때는 보통 Prony Brake가 사용되고 있다. 이 Prony Brake를 사용하신 분은 누구든지 경험하듯이 냉각수의 공급이 곤란하며 산수가 되어 시험장소에 물바다가 되며 Balance가 되더라도 Arm의 진동으로 저울의 눈금을 읽기가 곤란하여 정확한 특성산출에 지장을 초래하고 있다. 금반 폐공장에서 상기의 곤란한 점을 제거하고 간편하고 효율좋은 실부하시험기를 제작 사용하여 다대한 성과를 올리고 있기에 그 구조와 사용방법을 소개하고저 한다.

  • PDF

Controlling the Hardness and Tribological Behaviour of Non-asbestos Brake Lining Materials for Automobiles

  • Mathur, R.B.;Thiyagarajan, P.;Dhami, T.L.
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.6-11
    • /
    • 2004
  • In spite of unparalleled combination of essential material properties for brake linings and clutch facings, replacement for asbestos is seriously called for since it is a health hazard. Once asbestos is replaced with other material then composition and properties of brake pad changes. In certain cases hardness of the material may be high enough to affect the rotor material. In this study, hardness of the brake pad has been controlled using suitable reinforcement materials like glass, carbon and Kevlar pulp. Brake pad formulations were made using CNSL (cashew net shell liquid) modified phenolic resin as a binder, graphite or cashew dust as a friction modifier and barium sulphate, talc and wollastonite as fillers. Influence of each component on the hardness value has been studied and a proper formulation has been arrived at to obtain hardness values around 35 on Scleroscopic scale. Friction and wear properties of the respective brake pad materials have been measured on a dynamometer and their performance was evaluated.

  • PDF

A test for friction and wear characteristic of brake disk materials (제동디스크 소재의 마찰-마모특성 시험)

  • Lim, Choong-Hwan;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1761-1765
    • /
    • 2008
  • In the braking of a railroad car, mechanical brake systems using wheel tread and brake disk are applied as well as electrical brake systems by regenerator and rheostat. It is very important to consider the frictional characteristic because kinetic energy of the vehicle is dissipated as converted thermal energy through friction between disk and brake pad during disk braking. A friction coefficient and wear characteristic are decided from the interrelationship of disk and friction material in the disk brake system. Lab-scale dynamometer test on developed brake disk materials for increasing heat resistance was performed in this study. Each candidate material was tested at various braking speeds and pressures and we obtained the friction coefficient and wear characteristic. And we executed comparative evaluation of the result from the test.

  • PDF

Friction and Wear Properties of High Manganese Steel in Brake Friction Material for Passenger Cars (자동차용 브레이크 마찰재에서 고망간강의 마찰 및 마모특성)

  • Jung, Kwangki;Lee, Sang Woo;Kwon, Sungwook;Song, Myungsuk
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.88-95
    • /
    • 2020
  • In this study, we investigate the mechanical properties of high manganese steel, and the friction and wear characteristics of brake friction material containing this steel, for passenger car application, with the aim of replacing copper and copper alloys whose usage is expected to be restricted in the future. These steels are prepared using a vacuum induction melting furnace to produce binary and ternary alloys. The hardness and tensile strength of the high manganese steel decrease and the elongation increases with increase in manganese content. This material exhibits high values of hardness, tensile strength, and elongation; these properties are similar to those of 7-3 brass used in conventional friction materials. We fabricate high manganese steel fibers to prepare test pad specimens, and evaluate the friction and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The brake pad material is found to have excellent friction stability in comparison with conventional friction materials that use 7-3 brass fibers; particularly, the friction stability at high temperature is significantly improved. Additionally, we evaluate the wear using a wear test method that simulates the braking conditions in Europe. It is found that the amount of wear of the brake pad is the same as that in the case of the conventional friction material, and that the amount of wear of the cast iron disc is reduced by approximately 10. The high manganese steel is expected to be useful in the development of eco-friendly, copper-free friction material.