• 제목/요약/키워드: Brake Valve

검색결과 96건 처리시간 0.022초

카운터 밸런스 밸브를 내장한 유압 모터 브레이크 시스템의 동특성 (A Study on Dynamic Characteristics of Hydraulic Motor Brake System with Counter Balance Valve)

  • 윤소남;이일영
    • 수산해양기술연구
    • /
    • 제29권3호
    • /
    • pp.214-219
    • /
    • 1993
  • Counter balance valve is used as one part of hydraulic motor brake system. The function of this valve is to protect over-run or free falling of inertia load. But occasionally the brake system with counter balance valve makes some undesirable problems such as pressure surges or vibrations. These problems may hurt system safety and driver's conformability. Nevertheless, studies on dynamic characteristics of hydraulic system including counter balance valve are very rare, so further accumulation of research results are required. In this study, for the purpose of easy estimation about dynamic characteristics of hydraulic system including counter balance valve, precise formulation describing fluid dynamics and valve dynamics under various boundary conditions were made. The equations obtained in the preceding process include some parameters that must be got experimentally. Flow coefficients of valve and choke are the most significant ones among the parameters. So these parameters are obtained experimentally in this study, and experimental equations obtained from the experimental data were used for numerical calculation. The equations were analysed by numerical integration using Runge-Kutta method, because the equations contain various nonlinear terms. From the numerical analysis, it was verified that the dynamic response of counter balance valve and pressure variation at each elements can be estimated very easily. So the analysing method developed in this study enabled very easy estimating the relation between the performances of counter balance valve and various physical parameters related to the valve. Conclusively, it is said that the results obtained in this study can be used very usefully to develop a new type counter balance valve or to apply the valve to actual hydraulic system for various industrial equipments.

  • PDF

공기식 브레이크 밸브의 요소설계 (Simulation Study on the Design of Air Brake Valve for Automobile Applications)

  • 이동우;전민승;송정일
    • 한국정밀공학회지
    • /
    • 제34권2호
    • /
    • pp.145-150
    • /
    • 2017
  • Air brake valves are widely used in automotive braking systems and the Korean automobile industry depends on importing them. Therefore, we should develop the technical expertise for their domestic production. In this study, air brake valves were analyzed that can be used in a variety of automobiles. Computational fluid dynamics analysis, static structural analysis, and hyper-elastic analysis were carried out. Before production of an air brake valve system, the performance of different parts has to be evaluated, for instance by using finite element analysis. The structural stability of the product can be determined using static dynamics. The compression behavior of the O-ring is predictable by nonlinear hyper elastic analysis, although errors are possible due to one-way loading. This simulation study can both save time and reduce costs compared to the development of experimental prototypes.

차량 제동 성능 해석 프로그램 개발 (Development of Automotive Braking Performance Analysis Program Considering Dynamic Characteristic)

  • 정일호;이수호;서종휘;박태원
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.175-181
    • /
    • 2004
  • Analysis of brake characteristics has progressed rapidly in recent years, as computer techniques have developed. However, there are many problems in predicting braking characteristics, due to the numerous design variables of the brake system. Therefore, a synthetic braking performance analysis is required for all brake system parts such as master cylinder, booster, control valve and split system. In this paper, a program which can analyze braking performance such as force distribution, braking efficiency, pedal force and pedal travel, is presented. The preprocessor of the program helps users prepare input files through a dialog box. An additional postprocessor makes the graph presentation of solved results. Also, a simple example problem is applied to show the usefulness of the presented program.

유압 구동계 에너지 재생 브레이크를 적용한 자동차 테일게이트 개폐장치에 대한 동특성 해석 (Dynamic Analysis on the Tail Gate System for Vehicle with the Energy Regenerative Brake of Hydraulic Driven Systems)

  • 최순우;허준영
    • 유공압시스템학회논문집
    • /
    • 제7권2호
    • /
    • pp.19-26
    • /
    • 2010
  • The typical trunk lid system for vehicle is composed of a hinge having 4-bar link and gas lifter. Here, the energy regenerative brake of hydraulic driven systems is applied to the tail gate system for vehicle and removed the gas lifter. The new tail gate system is composed of a hydraulic pump by electric motor, a hydraulic motor, four check valves, an accumulator, a relief valve and a directional control valve. The dynamic characteristics of the hydraulic motor system, such as the surge pressure and response time, are investigated in both brake action and acceleration action. The capacity selection method of accumulator by mathematical model is based upon trial and error approach and computer simulation by AMEsim software is carried out.

  • PDF

ER 현가장치 및 ER 브레이크를 적용한 전체차량의 거동분석 (Maneuver Analysis of Full-vehicle Featuring Electrorheological Suspension and Electrorheological Brake)

  • 성금길;최승복
    • 한국소음진동공학회논문집
    • /
    • 제17권5호
    • /
    • pp.464-471
    • /
    • 2007
  • This paper presents a maneuver analysis of a full-vehicle featuring electrorheological(ER) suspension and ER brake. In order to achieve this goal, an ER damper and an ER valve pressure modulator are devised to construct ER suspension and ER brake systems, respectively. After formulating the governing equations of the ER damper and ER valve pressure modulator, they are designed and manufactured for a middle-sized passenger vehicle, and their field-dependent characteristics are experimentally evaluated. The governing equation of motion for the full-vehicle is then established and integrated with the governing equations of the ER suspension and ER brake. Subsequently, a sky-hook controller for the ER suspension and a sliding mode controller for the ER brake are formulated and implemented. Control performances such as vertical displacement and braking distance of vehicle are evaluated under various driving conditions through computer simulations.

자동차 미끄럼방지 제동장치의 유압 제어 특성 (Hydraulic Control Characteristics of the ABS for an Automotive)

  • 김병우;박호
    • 한국산학기술학회논문지
    • /
    • 제8권1호
    • /
    • pp.10-17
    • /
    • 2007
  • 자동차 미끄럼방지 장치의 최적 제어를 위해서는 유압 모듈레이터 특히, 솔레노이드 밸브에 대한 정확한 동특성 해석이 필요하다. 그러나, 현재까지 진행된 대부분의 연구들은 솔레노이드 밸브 자체만을 고려하였기 때문에 실제 자동차 미끄럼방지 장치에 제한적으로 적용되었다. 본 연구에서는 유압 모듈레이터에 작용하는 압력을 고려한 솔레노이드 밸브의 동특성 해석을 위하여 실험과 이론 해석을 실시하였다. 작동 압력이 솔레노이드 밸브의 동특성에 끼치는 영향을 정량적으로 해석하였고 설계인자를 변화시키면서 성능향상 방안을 제안하였다. 따라서, 본 연구에서 수행한 솔레노이드 밸브 동특성 해석결과는 자동차 미끄럼방지 장치의 최적 제어 기준으로 활용할 수 있을 것이다.

  • PDF

Effects of the Intake Valve Timing and the Injection Timing for a Miller Cycle Engine

  • Han, Sung-Bin;Chang, Yong-Hoon;Choi, Gyeung-Ho;Chung, Yon-Jong;Poompipatpong, Chedthawut;Koetniyom, Saiprasit
    • 에너지공학
    • /
    • 제19권1호
    • /
    • pp.32-38
    • /
    • 2010
  • The objective of the research was to study the effects a Miller cycle. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. Miller Cycle without supercharging can increase brake thermal efficiency 1.08% and reduce brake specific fuel consumption 4.58%. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency.

미끄럼방지 제동장치용 솔레노이드 밸브의 맥동특성 해석 (Analysis on the Surge Characteristics of the Solenoid Valve for Anti-Lock Brake System)

  • 김병우;박호
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.2083-2088
    • /
    • 2010
  • It is necessary to carry out quantitative analysis for the ABS hydraulic modulator to upgrade the system performances. Mathematical modeling method for the ABS hydraulic modulator, is suggested in the view of electromagnetism and fluid mechanics. Also, an analytic method is proposed for the resultant forces of electromagnetism and hydraulic pressure generated in the real vehicle ABS. The relationships between the design factor of Inlet & outlet solenoid valve and the system performance of ABS, are investigated through the analytical precess.