• 제목/요약/키워드: Brake Pedal

검색결과 56건 처리시간 0.027초

LabView를 이용한 휴대형 브레이크 저더 측정 시스템 구현 (Implementation of the portable brake judder measurement system by use of the Labview)

  • 신동욱;김선형
    • 한국정보통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.569-574
    • /
    • 2008
  • 자동차에서 디스크 편차 변이(Disk Thickness Variation : DTV)가 차체 진동 혹은 브레이크 페달 떨림 발생의 근원이 되므로 이를 운전자 보호차원에서 또는 생산 초기 출하시점에서 이를 검사할 수 있는 측정기기의 개발에 본 연구의 목적이 있다. 본 논문에서는 이런 DTV정보와 Labview 언어를 이용한 휴대용 Brake Judder측정 시스템을 개발하였다.

4가지 종류의 좌측 핸드 컨트롤 장치에 대한 사용자의 EMG 분석 및 운전 성능 평가 (Analysis of EMG Activities and Driving Performance for Operating Four Types of Left Hand Control Devices)

  • 송정헌;김용철
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권4호
    • /
    • pp.143-152
    • /
    • 2017
  • The main purpose of this research was to examine the EMG characteristics of driver's upper limb and driving performance for operating accelerator and brake pedal by using four types of left hand control devices(Push/Pull, Push/Right angle, Push/Rock, Push/Twist) during simulated driving. The persons with disabilities in the lower extremity have problems in operation of the vehicle because of functional impairments for controlling accelerator and brake pedal. Therefore, if hand control device is used for adaptive driving controls in persons with lower extremity loss, the disabled people could improve their quality of mobility life by driving a car. Twenty subjects were involved in this research to assess driving performance and EMG activities for operating accelerator and brake pedal by using four types of left hand controls in driving simulator. We measured EMG responses of six muscles(posterior deltoid, middle deltoid, biceps, triceps, extensor carpi radialis, and flexor carpi radialis) during pulling and pushing movement with four types of left hand controls for acceleration and braking. STISim Drive 3 program was used for evaluation test of four types of left hand control devices in straight lane course for time to reach target speed and brake reaction time. While operating the four types of left hand controls for acceleration, EMG activities of posterior deltoid in normal subjects were significantly increased(p < 0.05) compared to the disabled subjects. It was also found that EMG responses of triceps and posterior deltoid were significantly increased(p < 0.05) when using the Push/Right angle type than Push/Pull type. While operating the four types of left hand controls for braking, EMG activities of flexor carpi radialis and triceps in subjects with disability were significantly increased(p < 0.05) compared to the normal subjects. It was shown that muscle responses of posterior deltoid, middle deltoid and triceps were significantly increased when using the Push/Right angle type than Push/Rock type. Time to reach target speed and brake reaction time in subjects with disability was increased by 2.5% and 4.6% on average compared to normal subjects. The person with disabilities showed a tendency to relatively slow performance in acceleration at the straight lane course.

퍼지논리제어기를 이용한 차량의 궤적제어 (Vehicle Trajectory Control using Fuzzy Logic Controller)

  • 이승종;조현욱
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.91-99
    • /
    • 2003
  • When the driver suddenly depresses the brake pedal under critical conditions, the desired trajectory of the vehicle can be changed. In this study, the vehicle dynamics and fuzzy logic controller are used to control the vehicle trajectory. The dynamic vehicle model consists of the engine, the rotational wheel, chassis, tires and brakes. The engine model is derived from the engine experimental data. The engine torque makes the wheel rotate and generates the angular velocity and acceleration of the wheel. The dynamic equation of the vehicle model is derived from the top-view vehicle model using Newton's second law. The Pacejka tire model formulated from the experimental data is used. The fuzzy logic controller is developed to compensate for the trajectory error of the vehicle. This fuzzy logic controller individually acts on the front right, front left, rear right and rear left brakes and regulates each brake torque. The fuzzy logic controlling each brake works to compensate for the trajectory error on the split - $\mu$ road conditions follows the desired trajectory.

전자 제어식 주차브레이크(EPB)의 성능분석 (Performance Analysis of Electronic Parking Brake)

  • 김성모;정종렬;신창우;임원식;차원석
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.751-755
    • /
    • 2011
  • Electric Parking Brake(EPB) is the system operated by electric control actuator. It differs from the mechanical parking brake system which is operated by lever and pedal in need of human power. The EPB system is composed of DC motor, helical and differential epicyclic gear, screw, cables, and sensor. This paper describes about the EPB system mathematically and constructs a modeling of the EPB system using MATLAB/SIMULINK. Especially, SimMechanics library in SIMULINK is used to make each parts of system a module. By made modeling of the friction torque between bolt and nut. Cable tension can be maintained after the motor operating stops.

자율주행 시뮬레이션 환경을 위한 차량 구동 및 제동 제어기 개발 (Development of Throttle and Brake Controller for Autonomous Vehicle Simulation Environment)

  • 곽지섭;이경수
    • 자동차안전학회지
    • /
    • 제14권1호
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents a development of throttle and brake controller for autonomous vehicle simulation environment. Most of 3D simulator control autonomous vehicle by throttle and brake command. Therefore additional longitudinal controller is required to calculate pedal input from desired acceleration. The controller consists of two parts, feedback controller and feedforward controller. The feedback controller is designed to compensate error between the actual acceleration and desired acceleration calculated from autonomous driving algorithm. The feedforward controller is designed for fast response and the output is determined by the actual vehicle speed and desired acceleration. To verify the performance of the controller, simulations were conducted for various scenarios, and it was confirmed that the controller can successfully follow the target acceleration.

근전도 생리 분석을 이용한 상용차용 전자페달의 평가 (Evaluation of Electronic Pedal in Commercial Vehicles using Physiology Analysis of Electromyography)

  • 김재준;김경;신선혜;유창호;정구영;오승용;권대규
    • 한국정밀공학회지
    • /
    • 제28권12호
    • /
    • pp.1434-1440
    • /
    • 2011
  • In this paper, we assessed muscular activities of lower limbs and foot pressure for car and bus drivers according to operating three electronic pedals that we developed. To analyze drivers' physical exhaustion, muscular fatigue of lower limbs was evaluated. Eleven car drivers and six urban bus drivers were participated in this experiment. The virtual driving system was used for the real driving environment. The virtual driving system was comprised of a spring seat, a steering wheel, pedals (clutch, excel and brake pedals), a manual transmission and a virtual driving simulation. For the real vibration like situation on the road, six degree of freedom motion base system was used. Measured muscles were rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA) and gastrocnemius (Gn) muscles. For the quantitative muscular activities, integrated electromyography (IEMG) was analyzed. Muscular fatigues also were analyzed through the analysis of the median frequency. In addition, foot pressures were analyzed and compared through the peak and averaged pressure during the operating three developed electronic pedals. The experiments are conducted with total 17 drivers, 11 general public and 6 drivers. As a result of the analysis, electromyogram and fatigue analysis through intermediate frequency reduction for pedal-1 more efficient than other pedals. And foot pressure also was decreased. Consequently, we suggested the most efficient pedal and method to minimize the amount of cumulative fatigue.

환경 정보를 이용한 상용차량 전복 방지 알고리즘 개발 (Development of Roll Stability Control of Commercial Vehicles with Environment Information)

  • 박동우;허현동;이경수
    • 자동차안전학회지
    • /
    • 제5권1호
    • /
    • pp.50-55
    • /
    • 2013
  • When it comes to commercial vehicles, their unique characteristics - center of gravity, size, weight distribution - make them particularly vulnerable to rollover. On top of that, conventional heavy vehicle brake exhibits longer actuation delays caused in part by long air lines from brake pedal to tires. This paper describes rollover prevention algorithm that copes with the characteristics of commercial vehicles. In regard of compensating for high actuating delay, predicted rollover index with short preview time has been designed. Moreover, predicted rollover index with longer preview time has been calculated by using road curvature information based on environment information. When rollover index becomes larger than specific threshold value, desired braking force is calculated in order to decrease the index. At the same time, braking force is distributed to each tire to make yaw rate track desired value.

친환경 자동차의 급발진 원인 규명을 위한 EDR 저장 데이터 개선방안 연구 (A Study on the Improved EDR Storage Data to Identify the Cause of Unintended Acceleration of Eco-friendly Vehicles)

  • 이상배;김동한;문병준
    • 자동차안전학회지
    • /
    • 제14권3호
    • /
    • pp.17-22
    • /
    • 2022
  • In this paper, we propose the improved EDR (Event Data Recorder) storage data, which can identify the cause of unintended acceleration of eco-friendly vehicles. The proposed EDR storage data includes the brake pressure sensor value and a brake pedal travel sensor value. To verify the proposed EDR storage data, we observe the control algorithm and internal structure of the vehicle dynamic control system and a regenerative braking system in an eco-friendly vehicle.

MR 회전형 브레이크를 적용한 자전거 에르고미터의 주행 특성 (Pedaling Characteristics of Cycle Ergometer Using the MR Rotary Brake)

  • 윤영일;권대규;김동욱;김정자;김남균
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1669-1673
    • /
    • 2008
  • A new cycle ergometer using a Magneto-Rheological (MR) rotary brake system has been developed for rehabilitation of hemiplegia patients to reduce uneven pedaling characteristics. For this purpose, a control method to adjust the resistance of the MR rotary brake in real time based on the magnitude of the muscular force exerted by the subject has been devised so that the mechanical resistance to the pedaling can be minimized when the affected leg was engaged for pedaling. A series of experiments were carried out with and without the engagement of this real-time control mode of MR rotary brake at different pedaling rate to find out the effect of the real-time control mode. The characteristics of the pedaling for these specific conditions were analyzed based on the variations in angular velocities of the pedal unit. The results showed that the variations in the angular velocities were decreased by 42.9% with the control mode. The asymmetry of pedaling between dominant and non-dominant leg was 19.63% in non-control mode and 1.97% in the control mode. The characteristics of electromyography(EMG) in the lower limbs were also measured. The observation showed that Integrated EMG(IEMG) reduced with the control mode. Therefore, the new bicycle system using MR brake with the real time control of mechanical resistance was found to be effective in recovering the normal pedaling pattern by reducing unbalanced pedaling characteristics caused by disparity of muscular strength between affected and unaffected leg.

LED를 이용한 속도 감응형 차량용 브레이크등 시스템 (A study on speed-sensitive vehicle brake light system using LED)

  • 김태진;김형준;박성준;박인수;박성원;김성찬
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.809-810
    • /
    • 2016
  • 본 논문에서는 주행 중 운전자가 브레이크 페달을 조작할 경우, 차량 후미의 브레이크등과 연계되어 점등됨과 동시에 차량의 감속 정도에 따라 점등되는 영역이 단계적으로 점멸되며 표시되는 속도 감응형 차량용 브레이크등 시스템을 구현하여 실험적으로 확인하였다. 뒤따르는 후방 차량이 선행차량의 감속상태를 더욱 쉽고 빠르게 인지시킴으로써 선행 차량의 급정거에 따른 추돌 사고를 예방할 수 있으며, 후방 차량의 신속한 대응을 이끌어낼 수 있다. 또한 초음파 센서를 이용하여 차간 거리가 일정 거리 이상으로 가까워지는 경우, 부져와 함께 비상등이 켜지며 후방 차량의 운전자에게 상황을 전달한다.

  • PDF