• Title/Summary/Keyword: Brake Force

Search Result 280, Processing Time 0.023 seconds

Variable Parameter Sliding Controller Design for Vehicle Brake with Wheel Slip

  • Liang, Hong;Chong, Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1801-1812
    • /
    • 2006
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, pushrod force as the end control parameter, and an antilock sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. Simulation results indicate that the velocity and spacing errors were slightly larger than the results that without considering wheel slip effect, the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and the limit for the antilock control on non-constant adhesion road condition was determined by the minimum of the equivalent adhesion coefficient.

The Study of the Development of Inertia Braking System for the Trailer and the Testing Evaluation (관성제동장치 장착 트레일러의 제동성능에 관한 연구)

  • Kim, Soon-Yeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.114-119
    • /
    • 2007
  • Because the small trailers do not have the main brake system, it is difficult to gain the effective braking performance of the trailers while driving them. Especially it is very hard to brake them on the slope road condition. So we have technically developed Inertia Braking System for the military trailers which have not main braking system. Inertia Braking System is designed to be activated by the inertia force of trailer. It consists of the brake rod, damping cylinder, hand brake lever and brake cables. We have tested the trailer's braking performance. As a result, we have showed that the trailer's braking performance of the trailer equipped with Inertia Braking System, the road driving performance and the braking safety capability are improved dramatically. And we hope that it is rare to happen the accident while driving.

Design for Yaw Brake System in Wind Turbine (풍력발전기 요 브레이크 시스템의 설계)

  • Park, Jin-Hwan;Park, Sang-Shin;Yoon, Yong-Ik;Yoo, Chang-Hee;Hwang, Jung-Gyu
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.204-208
    • /
    • 2011
  • Yaw brakes are used in wind turbines to control the orientation of blades to be perpendicular to the wind. These devices are very important machine elements because they are closely related to the overall efficiency of wind turbines. One unit of yaw brakes is composed of a friction pad and a caliper. In this study, a tangential force between the friction pad and the disk is calculated when the brake is acting in 750 kW wind turbine. Then, stress distribution and the deformation of the caliper are calculated using a finite element analysis. An experimental equipment is also developed to verify the exactness of calculated results. The analytical and experimental results are presented and discussed.

Development of the FE(Finite Element) model for analysing the squeal noise of wheel brake system (휠 제동 장치의 스퀼 소음 해석을 위한 해석 모델 구축)

  • Cha, Jung-Kwon;Park, Yeong-Il;Lee, Dong-Kyun;Cho, Dong-Hun;Kim, Ki-Nam;Beak, Jin-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1407-1412
    • /
    • 2008
  • Squeal of disk brake is a noise and self excited vibration with frequency range of $1{\sim}10Khz$ cause by the friction force between the disk and the pad of the automobile. Passengers in a cehicle feel uncomfortable. In this paper modal analysis of wheel brake system was performed in order to prediction of squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. finite element model of that brake system was made. Some parts of a real brake was selected and modeled. The normal mode analysis method performs analyses of each brake system component. Experiment of modal analysis was performed for each brake components and experimental results were compared with analytical result from FEM.

  • PDF

Integrated Dynamics Control System for SUV with Front Brake Force and Front Steering Angle (전륜 제동력 및 전륜 조향각을 이용한 SUV 차량의 통합운동제어시스템 개발)

  • Song, Jeonghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.22-27
    • /
    • 2022
  • An integrated front steering system and front brake system (FSFB) is developed to improve the stability and controllability of an SUV. The FSFB simultaneously controls the additional steering angle and front brake pressure. An active front steering system (AFS) and an active front brake system (AFB) are designed for comparison. The results show that the FSFB enhances the lateral stability and controllability regardless of road and running conditions compared to the AFS and AFB. As a result, the yaw rate of the SUV tracks the reference yaw rate, and the side slip angle decreases. In addition, brake pressure control is more effective than steering angle control in improving the stability and steerability of the SUV on a slippery road. However, this deteriorates comfort on dry or wet asphalt.

A Study on the Performances of Hybrid type Electric Brake System (하이브리드형 전기식 제동장치의 성능에 대한 연구)

  • Song, Jeong-Hoon;Boo, Kwang-Suck;Lim, Chul-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1492-1498
    • /
    • 2003
  • This study proposes a new conceptual Hybrid Electric Brake System (HEBS) which overcomes problems of a conventional hydraulic brake system. HEBS adopt a contactless type bake system when a vehicle speed is high, to obtain superior braking performances by eddy current. On the contrary, when a vehicle speed is low, HEBS employs a contact type brake system such as conventional hydraulic brake system to generate higher brake force. Therefore, HEBS transfers faster the braking intention of drivers and guarantees the safety of drivers. Braking torque analysis is performed by using a mathematical model which is proposed to investigate the characteristic of a vehicle dynamics when the brake torque is applied. Optimal torque control is achieved by maintaining a desired slip corresponding to the road condition. The results show that HEBS reduces the stopping distance, saves the electric energy, and increases the stability.

Vehicle Longitudinal Brake Control with Wheel Slip and Antilock Control (바퀴 슬립과 잠김 방지 제어를 고려한 차량의 종렬 브레이크 제어)

  • Liang Hong;Choi Yong-Ho;Chong Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.502-509
    • /
    • 2005
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. The simulation results indicate that the velocity and spacing errors were slightly larger than those obtained when the wheel slip effect was not considered, that the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and that the limit for the antilock control under non-constant adhesion road conditions was determined by the minimum value of the equivalent adhesion coefficient.

The Study on Shield Moving ECB with PM for Application of Railway Vehicle (영구자석을 이용한 Shield moving형 와전류 제동기의 철도시스템 적용연구)

  • Lee, Chang-Mu;Han, Kyung-Hee;Choi, Yu-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1737-1741
    • /
    • 2014
  • The railway ECB(Eddy Current Brake) is used for high speed vehicle of railway like as TGV, ICE, JR-500 because it has stable braking force at high speed. But it is not effective at low speed and it is difficult to save energy due to the excitation of electro-magnet. Although ECB with permanent magnet is used for roller-coaster, it can not control the braking force without clutch. In this paper, the shield moving ECB with PM is proposed for application of railway vehicle. The angle of shield can be changed for various braking force. It changes the flux amount from PM, then the braking force will be reduced. The brake of 800W is simulated by using the software, "Ansoft Maxwell". The characteristics of braking will be shown by the shapes of magnet, disk and various speeds.

Estimation of Tire Braking Force and Road Friction Coefficient Between Tire and Road Surface For Wheel Slip Control (휠 슬립 제어를 위한 타이어와 노면 사이의 타이어 제동력 및 노면 마찰계수 추정)

  • Hong, Dae-Gun;Huh, Kun-Soo;Yoon, Pal-Joo;Hwang, In-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.517-523
    • /
    • 2004
  • Recently, wheel slip controllers with controlling the wheel slip directly has been studied using the brake-by-wire actuator. The wheel slip controller is able to control the braking force more accurately and can be adapted to various different vehicles more easily than the conventional ABS systems. The wheel slip controller requires the information about the tire braking force and road condition in order to achieve the control performance. In this paper, the tire braking forces are estimated considering the variation of the friction between brake pad and disk due to aging of the brake, moisture on the contact area or heating. In addition, the road friction coefficient is estimated without using tire models. The estimated performance of tire braking forces and the road friction coefficient is evaluated in simulations.

A Study of Optimal Braking Force Proportioning Magnitude for the Braking Stability of a 8×4 Vehicle (8×4 차량의 제동성 안정을 위한 제동력 최적 배분에 관한 연구)

  • Kim, Kwanju;Lee, Juhyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.17-22
    • /
    • 2013
  • Design of braking system is one of the most critical subjects in vehicle stability. In this paper, optimal scheme for brake force proportioning of all-wheel-drive vehicle is proposed to guarantee the vehicle dynamic stability under plausible drive circumstances. A brake force distribution of generic $8{\times}4$ vehicle is calculated according to proposed scheme and braking stability of this vehicle is verified by using a commercial vehicle software, Trucksim.