• Title/Summary/Keyword: Brake Factor

Search Result 85, Processing Time 0.021 seconds

A study on the Design Factor for the High-speed Brake and Numerical Analysis of Braking Force (고속제동 설계인자와 제동력의 수치계산에 관한 연구)

  • Choi Kyung-Jin;Song Mun-Suk;Shin You-Jung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.139-144
    • /
    • 2004
  • Since the braking system of rolling stock is directly linked to it's safety, ensuring reliability of braking system and evaluation of performance of it are very important. To develope the performance of braking system, it is required advanced technology and gradually various factors in the field test result This study is designed to analyze various factors about braking force in rolling stock, also, by comparing braking force of KTX with that of high speed train. The study suggests to establish a method of computation of braking force suitable for high speed train having a lot of trouble in calculating braking distance by diversification of patterns of braking system such as the train of speed up and introduction of electric and pneumatic braking system.

  • PDF

Curing Process of Phenolic Resin (페놀 수지의 경화 공정)

  • Lee, Yoon Bae;Sung, Si Chang;Shin, Eun Jung
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.292-295
    • /
    • 2005
  • The curing time of the phenolic resin for the processing of brake pad is very important factor for reducing the processing cost. The curing time could be investigated by examining the reaction time of the phenolic resin and hexamethylenediamine. The reaction time has been studied by FT-IR, Differential Scanning Calolimetric Analysis (DSC), and Thermogravimetric Analysis (TGA).

Effect of Engine Operating Conditions on Combustion and Exhaust Emission Characteristics of a Gasoline Direct Injection(GDI) Engine Fueled with Bio-ethanol (직접분사식 가솔린엔진에서 운전조건에 따른 바이오에탄올의 연소 및 배기배출물 특성)

  • Yoon, Seung Hyun;Park, Su Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.609-615
    • /
    • 2015
  • In this study, the combustion and exhaust emission characteristics in a gasoline direct injection engine with variations of the bio-ethanol-gasoline blending ratio and the excess air factor were investigated. To investigate the effects of the excess air factor and the bio-ethanol blends with gasoline, combustion characteristics such as the in-cylinder combustion pressure, rate of heat release (ROHR), and the fuel consumption rate were analyzed. The reduction of exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), and nitrogen oxides ($NO_x$) were compared with those of gasoline fuel with various excess air factors. The results showed that the peak combustion pressure and ROHR of bio-ethanol blends were slightly higher and were increased as bio-ethanol blending ratio is increased. Brake specific fuel consumption increased for a higher bio-ethanol blending ratio. The exhaust emissions decreased as the bio-ethanol blending ratio increased under all experimental conditions. The exhaust emissions of bio-ethanol fuels were lower than those of gasoline.

Vehicle Longitudinal Velocity Estimation on Inclined Road (경사진 노면에서의 차량의 종 속도 추정)

  • Lee, Sang-Yeob;Kim, In-Keun;Lee, Dong-Hun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • On-line and real-time information of the longitudinal velocity is the essential factor for the Advanced Vehicle Control Systems such as ABS(Anti-lock Brake System), TCS(Traction Control System), ESC (Electronic Stability Control) etc. However, the longitudinal velocity cannot be easily measured or calculated during braking maneuvering. A new algorithm is presented for the estimation of the longitudinal velocity with the measurements of the vehicle longitudinal/lateral acceleration, steering angle and yaw rate. The algorithm is designed utilizing the Extended Kalman Filter based on the 3 degree of freedom vehicle model. In order to compensate for the biased sensor signal on the inclined road, the inclined angle is also estimated. The performance of the proposed estimation algorithm is evaluated in field tests.

Emission Characteristics of a Gas Fueled Sl Engine under Lean Burn Conditions (가스연료엔진의 희박영역에서의 배출가스특성에 관한 연구)

  • 김창업;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.93-100
    • /
    • 2002
  • For natural gas and LPG fuel, measurements on the concentrations of individual exhaust hydrocarbon species have been made as a function of air-fuel ratio in a 2-liter four-cylinder engine using a gas chromatography. NMHC in addition to the species of HC, other emissions such as CO$_2$, CO and NOx were examined for natural gas and LPG at 1800rpm far two compression ratios (8.6 and 10.6). Fuel conversion efficiencies were also investigated together with emissions to study the effect of engine parameters on the combustion performances in gas engines especially under the lean bum conditions. It was found that CO$_2$ emission decreased with smaller C value of fuel, leaner mixture strength and the higher compression ratio. HC emissions from LPG engine consisted primarily of propane (larger 60%), ethylene and propylene, while main emissions from natural gas were mothane (larger than 60%), ethane, ethylene and propane on the average. The natural gas was proved to give the less ozone formation than LPG fuel. This was accomplished by reducing the emissions of propylene, which has relatively high MIR factor, and propane that originally has large portion of LPG. In addition, natural gas shows a benefit in other emissions (i.e. NMHC,NOx, CO$_2$and CO), SR and BSR values except fuel conversion efficiency.

Kinetic Energy Recovery System for Electric Vehicles (전기자동차용 기계적 에너지 회생장치)

  • Shin, Eung-Soo;Bang, Jae-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.440-445
    • /
    • 2011
  • This paper presents a new regenerative brake system of electric vehicles that employs a continuous variable transmission(CVT) and a flywheel. The developed device has advantages over existing regenerative brakes from a standpoint of reliability and versatility in actual driving conditions. The system consists of a CVT, two wheels, a flywheel, a coupling and auxiliary powertrain components. The CVT is designed as a combination of two cones and a roller, which causes the velocity difference between the wheel and the flywheel. The power flow of the flywheel system is controlled by the CVT roller and the coupling through step motors. A prototype has been developed and then its performance has been investigated for various operating conditions. Results show that the storage efficiency of the flywheel is much affected by the vehicle's velocity and it is reduced below 20% for high speed, as compared to the 25% efficiency for an ideal condition. The CVT is a primary factor for lowering the flywheel efficiencies due to large friction and slipping between the cone and the roller.

Wear Loss Presumption of Motorcycle Disk Brake Using Regression Analysis (회귀분석을 이용한 모터싸이클 브레이크 디스크의 마멸량 예측)

  • Jeun, Hwan-Young;Bae, Hwo-Jun;Kim, Young-Hee;Ryu, Mi-Ra;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.156-161
    • /
    • 2007
  • The friction test using disk-on-pad type was carried out and regression analysis with friction parameters was applied fur wear loss presumption of motorcycle break disk. The wear loss has an effect on the frictional factor such as applied load, sliding speed, and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors on wear loss of motorcycle break disk. From this study, the result was shown that the regression analysis equation containing 4 elements were constructed and this equation had a trust of 95% in wear loss presumption of motorcycle break disk. It is possible to apply for another automobile parts.

A Study on Friction Characteristics of Motorcycle Disk Brake Using Design of Experiment (실험계획법을 이용한 이륜자동차 브레이크 디스크의 마찰특성에 관한 연구)

  • Jeun, Hwan-Young;Bae, Hwo-Jun;Park, Kyu-Jung;Ryu, Mi-Ra;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.175-179
    • /
    • 2007
  • The effect of manufacturing parameters on friction characteristics of motorcycle break system was studied using a design of experiment. Such parameters conditions have an effect on the frictional factor such as applied load, sliding speed, and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors. In this study, the friction characteristics using design of experiment containing 3 elements were investigated for an optimal condition for the best motorcycle break system employing full factorial design. From this study, the result was shown that the applied load in frictional factors was the most important, next to sliding speed, number of ventilated disk hole.

Commentary Study on Automatic Speedbrake Control System of B747-8 (B747-8 Automatic Speedbrake Control System에 대한 해석적 연구)

  • Moon, Bong Sup;Nam, MyongKwan;Choi, Youn Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.3
    • /
    • pp.40-47
    • /
    • 2018
  • Reducing aircraft speed is the important task in the Rejected Takeoff and/or landing process. It is known that the effect of the Speedbrake is most important factor during the rejected takeoff maneuver in particular near V1 on the critical field length runway. The B747 designer created Automatic Speedbrake Control System to relieve pilot workload, improves brake operation and ensures proper Speedbrake operation for rejected take off. However, those who make the Rejected Takeoff procedure ignored the Automatic function and made it does all manual operations. This lets procedures difficult, complicated, and a cause of confusion and pilot error. This study was conducted to commentary the mechanism and function of the Automatic Speedbrake Control System of B747-8 and to propose appropriate B747-8 Rejected Take off procedures for its function to reduce the workload of pilots and contribute to reduce the possibility of pilot error during Rejected Takeoff.

A Strength Analysis of Gear Train for Hydro-Mechanical Continuously Variable Transmission

  • Bae, Myung Ho;Bae, Tae Yeol;Yoo, Young Rak
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.163-172
    • /
    • 2018
  • The power train of hydro-mechanical continuously variable transmission(HMCVT) for the middle class forklift makes use of an hydro-static unit, hydraulic multi-wet disc brake & clutches and complex helical & planetary gears. The complex helical & planetary gears are a very important part of the transmission because of strength problems. The helical & planetary gears belong to the very important part of the HMCVT's power train where strength problems are the main concerns including the gear bending stress, the gear compressive stress and scoring failures. The present study, calculates specifications of the complex helical & planetary gear train and analyzes the gear bending and compressive stresses of the gears. It is necessary to analyze gear bending and compressive stresses confidently for an optimal design of the complex helical & planetary gears in respect of cost and reliability. This paper not only analyzes actual gear bending and compressive stresses of complex helical & planetary gears using Lewes & Hertz equation, but also verifies the calculated specifications of the complex helical & planetary gears by evaluating the results with the data of allowable bending and compressive stress from the Stress - No. of cycles curves of gears. In addition, this paper explains actual gear scoring and evaluates the possibility of scoring failure of complex helical & planetary gear train of hydro-mechanical continuously variable transmission for the forklift.