• Title/Summary/Keyword: Brainstem nuclei

Search Result 9, Processing Time 0.024 seconds

Effects of Electrical Stimulation of Brainstem Nuclei on Dorsal Horn Neuron Responses to Mechanical Stimuli in a Rat Model of Neuropathic Pain (신경병증성 통증 모델 쥐에서 뇌간 핵의 전기자극이 후각세포의 기계자극에 대한 반응도에 미치는 영향)

  • Leem Joong-Woo;Choi Yoon;Gwak Young-Seob;Nam Taik-Sang;Paik Kwang-Se
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.241-249
    • /
    • 1997
  • The aim of the present study is to examine the brainstem sites where the electrical stimulation produces a suppression of dorsal horn neuron responses of neuropathic rats. An experimental neuropathy was induced by a unilateral ligation of L5-L6 spinal nerves of rats. Ten to 15 days after surgery, the spinal cord was exposed and single-unit recording was made on wide dynamic range (WDR) neurons in the dorsal horn. Neuronal responses to mechanical stimuli applied to somatic receptive fields were examined to see if they were modulated by electrical stimulation of various brainstem sites. Electrical stimulation of periaqueductal gray (PAG), n. raphe magnus (RMg) or n. reticularis gigantocellularis (Gi) significantly suppressed responses of WDR neurons -to both noxious and non-noxious stimuli. Electrical stimulation of other brainstem areas, such as locus coeruleus. (LC) and n. reticularis paragigantocellularis lateralis (LPGi), produced little or no suppression. Microinjection of morphine into PAG, RMg, or Gi also produced a suppression as similar pattern to the case of electrical stimulation, whereas morphine injection into LC or LPGi exerted no effects. The results suggest that PAG, NRM and Gi are the principle brainstem nuclei involved in the descending inhibitory systems responsible for the control of neuropathic pain. These systems are likely activated by endogenous opioids and exert their inhibitory effect by acting on WDR neurons in the spinal cord.

  • PDF

Vestibular Evoked Myogenic Potential in Idiopathic Parkinson's Disease (특발성 파킨슨병 환자의 전정유발근육전위)

  • Lee, Seung Hwan;Kim, Kwang Ki;Kim, Sung Hun
    • Annals of Clinical Neurophysiology
    • /
    • v.7 no.2
    • /
    • pp.80-82
    • /
    • 2005
  • Background: Idiopathic Parkinson's disease (IPD) is closely related to Lewy body pathology. Pathological changes in medullar oblongata and pontine tegmentum have been reported in patients with subclinical motor symptom. Vestibular evoked myogenic potential (VEMP) is mediated by vestibular nuclei in lower brainstem and reflects the function of lower brainstem. The purpose of our study is to estimate the lower brainstem function in IPD patients. Methods: Ten patients with idiopathic Parkinson's disease underwent VEMP test. The patients were divided into Hohn-Yahr (H-Y) stage I (unilateral motor involvement) group and H-Y stage II or more severe (bilateral motor involvement) group. VEMP results were compared between groups using Mann-Whitney U test. Results: Among patients, 6 patients showed abnormal VEMP (unilateral abnormality 2, bilateral abnormalities 4). Between H-Y stage I group and H-Y II,III group, there was no statistical difference in the results of VEMP. Conclusions: We concluded that the lower brainstem dysfunction reflected in VEMP could occur in IPD regardless of the progression of the disease.

  • PDF

Studies of Origins of Neurons in Medulla that Project to the Lumbosacral Spinal Cord of the Cat (요천수에 투사하는 연수 신경세포들의 분포)

  • Cho, Sung-Do;Ko, Kwang-Ho;Oh, Uh-Taek
    • YAKHAK HOEJI
    • /
    • v.35 no.6
    • /
    • pp.486-496
    • /
    • 1991
  • Spinal parasympathetic outflows originate in the sacral parasympathetic nuclei. The sacral parasympathetic nuclei receive inputs from the brainstem. Many areas in the medulla appear to influence sympathetic outflow of the spinal cord. Whether neurons in these areas of the medulla may project to the lumbosacral cord to affect the parasympathetic outflow has not been studied clearly. Thus, this study was intended to investigate origins of cells projecting from the medulla to the sacral parasympathetic nuclei of the spinal cord. In 3 cats, horseradish peroxidase (HRP) was injected into the lower lumbar spinal cord. HRP labeled neurons were found mainly in the following areas: nucleus retroambiguus, nucleus tractus solitarius, raphe complex and ventrolateral area of the rostral medulla. Most of these areas are known to be involved in regulation of sympathetic activity, and, thus, these results indicate that these areas are likely to affect the sacral parasympathetic outflow as they do for the sympathetic nerves.

  • PDF

Reduced Volume of a Brainstem Substructure in Adolescents with Problematic Smartphone Use

  • Cho, In Hee;Yoo, Jae Hyun;Chun, Ji-Won;Cho, Hyun;Kim, Jin-Young;Choi, Jihye;Kim, Dai-Jin
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.32 no.4
    • /
    • pp.137-143
    • /
    • 2021
  • Objectives: Despite the growing concern regarding the adverse effects related to problematic smartphone use (PSU), little is known about underlying morphologic changes in the brain. The brainstem is a deep brain structure that consists of several important nuclei associated with emotions, sensations, and motor functions. In this study, we sought to examine the difference in the volume of brainstem substructures among adolescents with and without PSU. Methods: A total of 87 Korean adolescents participated in this study. The PSU group (n=20, age=16.2±1.1, female:male=12:8) was designated if participants reported a total Smartphone Addiction Proneness Scale (SAPS) score of ≥42, whereas the remaining participants were assigned to the control group (n=67, age=15.3±1.7, female:male=19:48). High-resolution T1 magnetic resonance imaging was performed, and the volume of each of the four brainstem substructures [midbrain, pons, medulla, and superior cerebellar peduncle (SCP)] was measured. Analysis of covariance was conducted to reveal group differences after adjusting for effects of age, gender, whole brainstem volume, depressive symptoms, and impulsivity. Results: The PSU group showed a significantly smaller volume of the SCP than the control group (F=8.273, p=0.005). The volume of the SCP and the SAPS score were negatively correlated (Pearson's r=-0.218, p=0.047). Conclusion: The present study is the first to reveal an altered volume of the brainstem substructure among adolescents with PSU. This finding suggests that the altered white matter structure in the brainstem could be one of the neurobiological mechanisms underlying behavioral changes in PSU.

Studies on the Relationship of the Central Neural Pathways to the Urinary Bladder and Wijung($BL_{40}$) (방광(膀胱)과 위중(委中)의 중추신경로와의 연계성에 관한 연구)

  • Lee, Chang-Hyun;Kim, Ho;Lee, Kwang-Gyu;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.805-817
    • /
    • 2009
  • This study was to investigate central localization of neurons projecting to the urinary bladder and urinary bladder-related acupoints(Wijung, $BL_{40}$) and neurons of immunoreactive to hormones and hormone receptors regulating urinary bladder function by using peudorabies virus(PRV). In this experiment, Bartha's strain of pseudorabies virus was used in rats to trace central localization of urinary bladder-related neurons and urinary bladder-related acupoints($BL_{40}$) which can regulate urinary system. PRV was injected into the urinary bladder and acupoints($BL_{40}$) related urinary system. After six days survival of rats, mainly common labeled neurons projecting to the urinary bladder and urinary bladder-related acupoints were identified in spinal cord, medulla, pons and diencephalon by PRV immunohistochemical staining method. First-order PRV labeled neurons projecting to urinary bladder and urinary bladder-related acupoints were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled preganglionic neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in the lateral horn area(sacral parasympathetic nucleus and intermediolateral nucleus), lamina V-X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting to urinary bladder and Wijung($BL_{40}$) was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus of tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, Barrington's nucleus and periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the paraventricular nucleus and a few ones were in the lateral hypothalamic nucleus, posterior hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus, median eminence, perifornical nucleus, periventricular nucleus and suprachiasmatic nucleus. In cerebral cortex, PRV labeled neurons were marked mostly in the frontal cortex, 1,2 area, hind limb area, agranular insular cortex. Immunoreactive neurons to Corticotropin releasiing factor(CRF), Corticotropin releasiing factor-receptor(CRF-R), c-fos and serotonin were a part of labeled areas among the virus-labeled neurons of urinary bladder and Wijung($BL_{40}$). The commonly labeled areas were nucleus tractus solitarius, area postrema, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), locus coeruleus, A5 cell group, Barrington,s nucleus, arcuate nucleus, paraventricular nucleus, frontal cortex 1, 2 area, hind limb, and perirhinal(agranular insular) cortex. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of urinary bladder-relate organs and it was revealed by tracing PRV labeled neurons projecting urinary bladder and urinary bladder-related acupoints. These commonly labeled areas often overlap with the neurons connected with hormones and hormone receptors related to urination.

Studies of the Central Neural Pathways to the Hapgok(LI4) and Large Intestine (합곡과 대장의 중추신경로와의 연계성에 관한 연구)

  • Lee, Chang-Hyun;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.217-226
    • /
    • 2011
  • The aim of this study is to identify central neural pathway of neurons following the projection to the large intestine and Hapgok(LI4) which is Won acupoint of the large intestine meridian of hand-yangmyeong. In this experiment, Bartha's strain of pseudorabies virus was used to trace central localization of neurons related with large intestine and acupoint(LI4) which has been known to be able to regulate intestinal function. The animals were divided into 3 groups: group 1, injected into the large intestine; group 2, injected into the acupoint(LI4); group 3, injected into the acupoint(LI4) after severing the radial, ulnar, median nerve. After four days survival of rats, PRV labeled neurons were identified in the spinal cord and brain by immunohistochemical method. First-order PRV labeled neurons following the projection to large intestine, acupoint(LI4) and acupoint(LI4) after cutting nerve were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in lamina V- X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the arcuate nucleus and median eminence. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of large intestine-related organs and it was revealed by tracing PRV labeled neurons projecting large intestine and related acupoint(LI4).

Facilitation of Afferent Sensory Transmission in the Cuneate Nucleus of Rat during Locomotor Movement

  • Shin, Hyung-Cheul;Park, Hyoung-Jin;Jin, Byung-Kwan;Chapin, John K.
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.99-103
    • /
    • 1994
  • Single neuronal activities were recorded in the cuneate nucleus of awake rats during rest and running behavior. Movement-induced changes in somatic sensory transmission were tested by generating post-stimulus time histograms of these neurons' responses to stimulation through eleetrodes chronically implanted under the skin of the forepaw, during control resting behavior and during two standardized speeds of locomotor movement: slow (1.0 steps/s), fast (2.0 steps/s). The magnitudes of firing during these responses were measured and normalized as percentage increases over background firing. The averaged evoked unit responses were facilitated by $+59.3{\pm}12.5%\;and\;+25.6{\pm}5.4%$ (SEM) as compared with resting behavior, during slow and fast movement respectively. This is to be compared with the movement-induced sensory suppressions observed previously in the ventrobasal thalamus $(-31.0%{\pm}1.9%)$ and in the primary somatosensory cortex $(-71.2%{\pm}3.8%)$ of slowly running rats. These results suggest that afferent somatosensory information may be uniquely modulated at each sensory relay, such that it may be facilitated at brainstem level and then subjected to suppression at higher somatosensory nuclei during movement.

  • PDF

Locations and Clinical Significance of Non-Hemorrhagic Brain Lesions in Diffuse Axonal Injuries

  • Chung, Sang Won;Park, Yong Sook;Nam, Taek Kyun;Kwon, Jeong Taik;Min, Byung Kook;Hwang, Sung Nam
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.4
    • /
    • pp.377-383
    • /
    • 2012
  • Objective : Detection of focal non-hemorrhagic lesion (NHL) has become more efficient in diffuse axonal injury (DAI) patients using an MRI. The aims of this study are to find out the radiological distribution, progress of NHL and its clinical significance. Methods : Between September 2005 and October 2011, 32 individuals with NHLs on brain MRI were enrolled. NHLs were classified by brain location into 4 major districts and 13 detailed locations including cortical and subcortical, corpus callosum, deep nuclei and adjacent area, and brainstem. The severity of NHL was scored from grades 1 to 4, according to the number of districts involved. Fourteen patients with NHL were available for MRI follow-up and an investigation of the changes was conducted. Results : Thirty-two patients had 59 NHLs. The most common district of NHL was cortical and subcortical area; 15 patients had 20 NHSs. However the most common specific location was the splenium of the corpus callosum; 14 patients had 14 lesions. The more lesions patients had, the lower the GCS, however, this was not a statistically meaningful difference. On follow-up MRI in 14 patients, out of 24 lesions, 13 NHLs resolved, 5 showed cystic change, and 6 showed atrophic changes. Conclusion : NHLs were located most commonly in the splenium and occur frequently in the thalamus and the mesial temporal lobe. Because most NHS occur concomitantly with hemorrhagic lesions, it was difficult to determine their effects on prognosis. Since most NHLs resolve completely, they are probably less significant to prognosis than hemorrhagic lesions.

The Concepts of Montage in Somatosensory Evoked Potentials (체성감각 유발 전위에서 montage에 대한 개념)

  • Cha, Jae-Kwan;Kim, Seung-Hyun
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.2
    • /
    • pp.160-167
    • /
    • 1999
  • Although somatosensory evoked potentials(SSEPs) have been utilized as the useful diagnostic tools in evaluating the wide variety of pathological conditions, such as focal lesions affecting the somatosensory pathways, demyelinating diseases, and detecting the clinically occult abnormality, their neural generators is still considerably uncertain. To appreciate the basis for uncertainties about the origins of SSEPs, consider criteria that must be met to establish a causal relationship between activity in a neural structure and a spine/ scalp-recorded potential. Electrode locations and channel derivations for SSEPs recordings are based on two principles:(1) the waveforms are best recorded from electrode sites on the body surface closest to the presumed generator sources along the somatosensory pathways, and(2) studies of the potential-field distribution of each waveform of interest dictate the best techniques to be used. In this article, authors will describe followings focused on ;(1) the concepts of near field potentials(NFPs) and far field potentials(FFPs) - the voltage of NFPs is highly dependent upon recording electrode position, FFPs are unlike NFPs in that they are widely distributed, their latencies and amplitudes are independent of recording electrode.(2) appropriate montage settings to detect the significant potentials in the median nerve and posterior tibial nerve SSEPs(3) neural generators of various potentials(P9, N13, P14, N18, N20, P37) and their clinical significance in interpretating the results of SSEPs. Especially, Characteristics of N18(longduration, small superimposed inflection) suggested that N18 is a complex wave with multiple generators including brainstem structures and thalamic nuclei. And N18 might be used as the parameter of braindeath. Precise understanding on these facts provide an adequate basis utilizing SSEPs for numerous clinical purposes.

  • PDF