• Title/Summary/Keyword: Brain-computer Interface

Search Result 193, Processing Time 0.03 seconds

Introduction of brain computer interface to neurologists

  • Kim, Do-Hyung;Yeom, Hong Gi;Kim, Minjung;Kim, Seung Hwan;Yang, Tae-Won;Kwon, Oh-Young;Kim, Young-Soo
    • Annals of Clinical Neurophysiology
    • /
    • v.23 no.2
    • /
    • pp.92-98
    • /
    • 2021
  • A brain-computer interface (BCI) is a technology that acquires and analyzes electrical signals from the brain to control external devices. BCI technologies can generally be used to control a computer cursor, limb orthosis, or word processing. This technology can also be used as a neurological rehabilitation tool for people with poor motor control. We reviewed historical attempts and methods toward predicting arm movements using brain waves. In addition, representative studies of minimally invasive and noninvasive BCI were summarized.

A Framework for Processing Brain Waves Used in a Brain-computer Interface

  • Sung, Yun-Sick;Cho, Kyun-Geun;Um, Ky-Hyun
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.315-330
    • /
    • 2012
  • Recently, methodologies for developing brain-computer interface (BCI) games using the BCI have been actively researched. The existing general framework for processing brain waves does not provide the functions required to develop BCI games. Thus, developing BCI games is difficult and requires a large amount of time. Effective BCI game development requires a BCI game framework. Therefore the BCI game framework should provide the functions to generate discrete values, events, and converted waves considering the difference between the brain waves of users and the BCIs of those. In this paper, BCI game frameworks for processing brain waves for BCI games are proposed. A variety of processes for converting brain waves to apply the measured brain waves to the games are also proposed. In an experiment the frameworks proposed were applied to a BCI game for visual perception training. Furthermore, it was verified that the time required for BCI game development was reduced when the framework proposed in the experiment was applied.

A Brain-Computer Interface Based Human-Robot Interaction Platform (Brain-Computer Interface 기반 인간-로봇상호작용 플랫폼)

  • Yoon, Joongsun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7508-7512
    • /
    • 2015
  • We propose a brain-machine interface(BMI) based human-robot interaction(HRI) platform which operates machines by interfacing intentions by capturing brain waves. Platform consists of capture, processing/mapping, and action parts. A noninvasive brain wave sensor, PC, and robot-avatar/LED/motor are selected as capture, processing/mapping, and action part(s), respectively. Various investigations to ensure the relations between intentions and brainwave sensing have been explored. Case studies-an interactive game, on-off controls of LED(s), and motor control(s) are presented to show the design and implementation process of new BMI based HRI platform.

EEG Based Brain-Computer Interface System Using Time-multiplexing and Bio-Feedback (Time-multiplexing과 바이오 피드백을 이용한 EEG기반 뇌-컴퓨터 인터페이스 시스템)

  • Bae, Il-Han;Ban, Sang-Woo;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.236-243
    • /
    • 2004
  • In this paper, we proposed a brain-computer interface system using EEG signals. It can generate 4 direction command signal from EEG signals captured during imagination of subjects. Bandpass filter used for preprocessing to detect the brain signal, and the power spectrum at a specific frequency domain of the EEG signals for concentration status and non-concentration one is used for feature. In order to generate an adequate signal for controlling the 4 direction movement, we propose a new interface system implemented by using a support vector machine and a time-multiplexing method. Moreover, bio-feed back process and on-line adaptive pattern recognition mechanism are also considered in the proposed system. Computer experimental results show that the proposed method is effective to recognize the non-stational brain wave signal.

Introduction to EEG-Based Brain-Computer Interface (BCI) Technology (뇌파 기반 뇌-컴퓨터 인터페이스 기술의 소개)

  • Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • There are a great numbers of disabled individuals who cannot freely move or control specific parts of their body because of serious neurological diseases such as spinal cord injury, amyotrophic lateral sclerosis, brainstem stroke, and so on. Brain-computer interfaces (BCIs) can help them to drive and control external devices using only their brain activity, without the need for physical body movements. Over the past 30 years, several Bel research programs have arisen and tried to develop new communication and control technology for those who are completely paralyzed. Thanks to the rapid development of computer science and neuroimaging technology, new understandings of brain functions, and most importantly many researchers' efforts, Bel is now becoming 'practical' to some extent. The present review article summarizes the current state of electroencephalogram (EEG)-based Bel, which have been being studied most widely, with specific emphasis on its basic concepts, system developments, and prospects for the future.

A Review of Research Trends on Brain Computer Interface(BCI) Games using Brain Wave (뇌파를 이용한 BCI 게임 동향 고찰)

  • Kim, Gui-Jung;Han, Jung-Soo
    • Journal of Digital Convergence
    • /
    • v.13 no.6
    • /
    • pp.177-184
    • /
    • 2015
  • Brain-computer interface is (BCI) is a communication device that the brain activity is directly input to the computer without input devices, such as a mouse or keyboard. As the brain wave interface hardware technology evolves, expensive and large EEG equipment has been downsized cheaply. So it will be applied to various multimedia applications. Among BCI studies, we suggest the domestic and foreign research trend about how the BCI is applied about the game almost people use. Next, look at the problems of the game with the BCI, we would like to propose the future direction of domestic BMI research and development.

A Development of Cognitive Assessment Tool based on Brain-Computer Interface for Accident Prevention (안전사고 예방을 위한 Brain-Computer Interface 기반 인지평가 도구 개발)

  • Lee, Chung-Gi;Yu, Seon-Guk
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.583-591
    • /
    • 2011
  • A number of Brain-Computer Interface (BCI) studies have been performed to assess the cognitive status through EEG signal. However, there are a few studies trying to prevent user from unexpected safety-accident in BCI study. The EEGs were collected from 19 subjects who participated in two experiments (rest & event-related potential measurement). There was significant difference in EEG changes of both spontaneous and event-related potential. Beta power and P300 latency may be useful as a biomarker for prevention of response to safety-accident.

  • PDF

A Development of Cognitive Assessment Tool based on Brain-Computer Interface for Accident Prevention (안전사고 예방을 위한 Brain-Computer Interface 기반 인지평가 도구 개발)

  • Lee, Chung-Ki;Yoo, Sun-Kook
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • A number of Brain-Computer Interface (BCI) studies have been performed to assess the cognitive status through EEG signal. However, there are a few studies trying to prevent user from unexpected safety-accident in BCI study. The EEGs were collected from 19 subjects who participated in two experiments (rest & event-related potential measurement). There was significant difference in EEG changes of both spontaneous and event-related potential. Beta power and P300 latency may be useful as a biomarker for prevention of response to safety-accident.

Designing Intuitive Spatial Game using Brain Computer Interface (뇌-컴퓨터 인터페이스를 사용한 공간 기반 게임 설계)

  • Kim, Na-Young;Yoo, Won-Dae;Lee, Yong-Il;Chung, Seung-Eun;Han, Moo-Kyoung;Yeo, Woon-Seung
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.1160-1165
    • /
    • 2009
  • User interface design environment has been known to be part of important elements in user experience and play, and its significance of functionalities are growing bigger each year. In present day, use of intuitive user interface design are on demand. Player can expect to get a new experience that they can not get from other exiting or similar form of games. For the better user experience, essential use of intuitive game play is necessary along with its perceptive user interface. This paper describes intuitive game environment design which will enhance user experience with use of brainwave signal for Brain Computer Interface.

  • PDF