• Title/Summary/Keyword: Brain tumor detection

Search Result 36, Processing Time 0.032 seconds

Development of Image-based System for Multiple Fluorescence Imaging Study (다중형광영상 연구를 위한 영상기반 시스템 개발)

  • Yoon, WoongBae;Kim, Hong Rae;Lee, Hyun Min;Kim, Young Jae;Kim, Kwang Gi;Yoo, Heon;Lee, Seung Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1445-1452
    • /
    • 2015
  • In these days, fluorescent materials such as ICG or 5-ALA is used for the brain surgery. The patients who underwent brain tumor surgery has been increased during last 30 years and the survivorship rate increased 22∼33% in 5 years. Recently, the Fluorescence induction surgery is developed for more safety and improved the resection rate for the glioma in the neurosurgery field. In this study, we proposed fluorescence area detection method for ICG and 5-ALA fluorescence induced surgery using acquired images from image processing. Accuracy was 99.21% from ICG images, and 99.51% from 5-ALA images. Matthews correlation coefficient was 88.67% from ICG images, and 90.49% from 5-ALA images.

The Role of T1-201 Brain SPECT in the Differentiating Recurrent Tumor from Radiation Necrosis (뇌종양의 재발과 방사선 괴사의 감별을 위한 탈륨 SPECT의 역할)

  • Won, Kyoung-Sook;Ryu, Jin-Sook;Moon, Dae-Hyuk;Yang, Seoung-Oh;Lee, Hee-Kyung;Lee, Jung-Kyo;Kwun, Byung-Duk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.4
    • /
    • pp.476-483
    • /
    • 1996
  • Following radiation therapy for brain tumors, patients often have clinical deterioration due to either radiation necrosis or recurrent tumor progression in the treatment field. The distinction between these entities is important but difficult clinically or even with CT or MRI. T1-201 has been known to accumulate in various tumors and be useful to grade, predict prognosis or detect recurrence of glioma. The aim of this study was to evaluate the usefulness of T1-201 SPECT in the differentiation of recurrent tumor from radiation necrosis. Of 67 patients who did T1-201 brain SPECT imaging with clinically suspected recurrent tumor or radiation necrosis, 20 patients underwent histopathological examination and constituted the study population. T1-201 uptake indices on T1-201 brain SPECT imaging rrere calculated and correlated with histopathological diagnosis. Of 20 patients, 15 were histopathologically confirmed as recurrent original tumor or malignant transformation of benign tumor and 5 were diagnosed as radiation necrosis. On T1-201 SPECT, 18 of 20 had T1-201 index above 2.5 which was regarded as positive indicator for the presence of tumor. Seventeen cases showed concordance, which consisted of 15 true positive and 2 true negative. Discordant 3 cases were all false positive. There was no case of false negative. The sensitivity, specificity, positive and negative predictive value of T1-201 SPECT were 100%, 40%, 83% and 100%. In conclusion, T1-201 brain SPECT is a sensitive diagnostic test in the detection of recurrent tumor following radiation therapy and is useful in the differentiation of recurrent tumor from radiation necrosis. Relatively low specificity should be evaluated further in larger number of patients in consideration of sampling error and referral bias for pathologic examination.

  • PDF

Detection of Tumor in Abnormal Region of Brain MR Images (뇌 MR영상에서 비정상 영역내의 종양 검출)

  • 송미영;조경은;조형제
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.160-163
    • /
    • 2002
  • 본 연구는 의료영상 중에 가장 많이 사용하는 의료 영상인 MR영상 중에서 머리 부위의 질병인 뇌종양에 대한 진단을 돕기 위한 연구이다. 뇌 MR영상의 T2강조 영상을 살펴보면, 종양 영역은 명암이 밝게 나타나고 종양 영역의 주변은 어둡게 나타나는 특성을 볼 수 있다. 따라서 제안된 방법은 뇌종양 특성인 명암의 밝기 정보를 기반으로 비정상 영역 내에서 명암 정보가 유사한 영역끼리 그룹화하고 그 중에 가장 밝은 영역을 종양 후보 영역으로 추출한 후 각 후보 영역들 중에서 MBR이 가장 큰 것을 종양으로 검출한다.

  • PDF

Statistical Techniques based Computer-aided Diagnosis (CAD) using Texture Feature Analysis: Applied of Cerebral Infarction in Computed Tomography (CT) Images

  • Lee, Jaeseung;Im, Inchul;Yu, Yunsik;Park, Hyonghu;Kwak, Byungjoon
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.399-405
    • /
    • 2012
  • The brain is the body's most organized and controlled organ, and it governs various psychological and mental functions. A brain abnormality could greatly affect one's physical and mental abilities, and consequently one's social life. Brain disorders can be broadly categorized into three main afflictions: stroke, brain tumor, and dementia. Among these, stroke is a common disease that occurs owing to a disorder in blood flow, and it is accompanied by a sudden loss of consciousness and motor paralysis. The main types of strokes are infarction and hemorrhage. The exact diagnosis and early treatment of an infarction are very important for the patient's prognosis and for the determination of the treatment direction. In this study, texture features were analyzed in order to develop a prototype auto-diagnostic system for infarction using computer auto-diagnostic software. The analysis results indicate that of the six parameters measured, the average brightness, average contrast, flatness, and uniformity show a high cognition rate whereas the degree of skewness and entropy show a low cognition rate. On the basis of these results, it was suggested that a digital CT image obtained using the computer auto-diagnostic software can be used to provide valuable information for general CT image auto-detection and diagnosis for pre-reading. This system is highly advantageous because it can achieve early diagnosis of the disease and it can be used as supplementary data in image reading. Further, it is expected to enable accurate medical image detection and reduced diagnostic time in final-reading.

Targeted Nanomedicine that Interacts with Host Biology

  • Ju, Jin-Myeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.81-81
    • /
    • 2017
  • Nanotechnology is of great importance to molecular biology and medicine because life processes are maintained by the action of a series of molecular nanomachines in the cell machinery. Recent advances in nanoscale materials that possess emergent physical properties and molecular organization hold great promise to impact human health in the diagnostic and therapeutic arenas. In order to be effective, nanomaterials need to navigate the host biology and traffic to relevant biological structures, such as diseased or pathogenic cells. Moreover, nanoparticles intended for human administration must be designed to interact with, and ideally leverage, a living host environment. Inspired by nature, we use peptides to transfer biological trafficking properties to synthetic nanoparticles to achieve targeted delivery of payloads. In this talk, development of nanoscale materials will be presented with a particular focus on applications to three outstanding health problems: bacterial infection, cancer detection, and traumatic brain injury. A biodegradable nanoparticle carrying a peptide toxin trafficked to the bacterial surface has antimicrobial activity in a pneumonia model. Trafficking of a tumor-homing nanoprobes sensitively detects cancer via a high-contrast time-gated imaging system. A neuron-targeted nanoparticle carrying siRNA traffics to neuronal populations and silences genes in a model of traumatic brain injury. Unique combinations of material properties that can be achieved with nanomaterials provide new opportunities in translational nanomedicine. This framework for constructing nanomaterials that leverage bio-inspired molecules to traffic diagnostic and therapeutic payloads can contribute on better understanding of living systems to solve problems in human health.

  • PDF

Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases

  • Park, Myung Hee;Igarashi, Kazuei
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.

Establishment of a Stable Cell Line Expressing Green Fluorescence Protein-fused Hypoxia Inducible Factor-1α for Assessment of Carcinogenicity of Chemical Toxicants

  • Kim, Sung-Hye;Seo, Hee-Won;Lee, Min-Ho;Chung, Jin-Ho;Lee, Byung-Hoon;Lee, Mi-Ock
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.189-193
    • /
    • 2009
  • Hypoxia inducible factor $1\alpha$ (HIF-$1\alpha$) is a potential marker of carcicnogenesis since it is overexpresssed in many human cancers such as brain, breast, and uterus, and its role has implicated in tumor cell growth and metastasis. In this study, we established a stable cell line that express green fluorescence protein (GFP)-fused hypoxia inducible factor $1\alpha$ (HIF-$1\alpha$) and evaluated the potential use of this cell line for assessment of carcinogenicity of chemical toxicants. Western blot analysis as well as fluorescence measurements showed that protein-level of GFP-HIF-$1\alpha$ was significantly enhanced in a dose-dependent manner upon treatment of hypoxia mimicking agents such as dexferrioxamine and $CoCl_2$. Well-Known tumor promoters such as mitomycin and methyl methanesulfonate. significantly induced the fluorescence intensity of GFP-HIF-$1\alpha$, whereas the known negative controls such as o-anthranilic acid and benzethonium chloride, did not. These results indicate that HIF-$1\alpha$ could be a biological parameter for detection of tumor initiators/promoters and suggest that the GFP-HIF-$1\alpha$ cell line is a useful system for screening of carcinogenic toxicants.

Gliomatosis Cerebri : Clinical Features and Prognosis (대뇌 신경교종증 : 임상특징 및 예후에 관한 연구)

  • Jo, Dae-Chuol;Hwang, Jeong-Hyun;Sung, Joo-Kyung;Hwang, Sung-Kyu;Hamm, In-Suk;Park, Yeun-Mook;Byun, Seung-Yul;Kim, Seung-Lae
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.12
    • /
    • pp.1399-1405
    • /
    • 2001
  • Objectives : Gliomatosis cerebri is an uncommon primary brain tumor characterized by diffuse neoplastic proliferation of glial cells, with the preservation of the underlying cytoarchitecture. The aim of this study is to evaluate clinical features, outcome of surgical treatment and adjuvant therapy of gliomatosis cerebri. Methods : Between Jan. 1990 and Dec. 2000, 12 patients were diagnosed with gliomatosis cerebri based on characteristic radiological and histological findings. The patients' age ranged from 18 to 77(mean 44) years and the male to female ratio was 7 : 5. Nine patients underwent decompressive surgery and three, biopsy only. Postoperative radiation therapy was given in all cases except three. In addition to radiation therapy, four patients received chemotherapy. The mean duration of follow-up period was 18.8 months. Results : The most common presenting symptom were seizure and motor weakness. The mean duration of symptom was 5.9 months. There was 5 bilateral lesions and tumor involved corpus callosum in 5, basal ganglia-thalamus in 4, and brain stem in 2. There was no operative mortality but four patients died during the follow-up. The mean survival period for 11 patients was 20.5 months from the time of diagnosis. In univariate analysis, the lesion involving corpus callosum, basal ganglia-thalamus and brain stem correlated significantly with the short length of survival(p<0.05). Also, postoperative radiation as a adjuvant therapy prolonged the patient's survival(p<0.05). Conclusions : In the management of gliomatosis cerebri patients, early detection by MR imaging, active management of increased intracranial pressure, decompressive surgical removal and postoperative adjuvant therapy such as radiation is thought to be a good treatment modality.

  • PDF

Predictive Factors of Survival Time of Breast Cancer in Kurdistan Province of Iran between 2006-2014: A Cox Regression Approach

  • Karimi, Asrin;Delpisheh, Ali;Sayehmiri, Kourosh;Saboori, Hojjatollah;Rahimi, Ezzatollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8483-8488
    • /
    • 2014
  • Background: Breast cancer is the most common cancer and the second most common cause of cancer-induced mortalities in Iranian women, following gastric carcinoma. The survival of these patients depends on several factors, which are very important to identify in order to understand the natural history of the disease. Materials and Methods: In this retrospective study, 313 consecutive women with pathologically-proven diagnosis of breast cancer who had been treated during a seven-year period (January 2006 until March 2014) at Towhid hospital, Sanandaj city, Kurdistan province of Iran, were recruited. The Kaplan-Meier method was used for data analysis, and finally those factors that showed significant association on univariate analysis were entered in a Cox regression model. Results: the mean age of patients was $46.10{\pm}10.81$ years. Based on Kaplan-Meier method median of survival time was 81 months and 5 year survival rate was $75%{\pm}0.43$. Tumor metastasis (HR=9.06, p=0.0001), relapse (HR=3.20, p=0.001), clinical stage of cancer (HR=2.30, p=0.03) and place of metastasis (p=0.0001) had significant associations with the survival rate variation. Patients with tumor metastasis had the lowest five-year survival rate (37%)and among them patients who had brain metastasis were in the worst condition (5 year survival rate= $11%{\pm}0.10$). Conclusions: Our findings support the observation that those women with higher stages of breast malignancies (especially with metastatic cancer) have less chance of surviving the disease. Furthermore, screening programs and early detection of breast cancer may help to increase the survival of those women who are at risk of breast cancer.

Comparative Analysis of Signal Intensity and Apparent Diffusion Coefficient at Varying b-values in the Brain : Diffusion Weighted-Echo Planar Image ($T_2^*$ and FLAIR) Sequence (뇌의 확산강조 영상에서 b-value의 변화에 따른 신호강도, 현성확산계수에 관한 비교 분석 : 확산강조 에코평면영상($T_2^*$ 및 FLAIR)기법 중심으로)

  • Oh, Jong-Kap;Im, Jung-Yeol
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.313-323
    • /
    • 2009
  • Diffusion-weighted imaging (DWI) has been demonstrated to be a practical method for the diagnosis of various brain diseases such as acute infarction, brain tumor, and white matter disease. In this study, we used two techniques to examine the average signal intensity (SI) and apparent diffusion coefficient (ADC) of the brains of patients who ranged in age from 10 to 60 years. Our results indicated that the average SI was the highest in amygdala (as derived from DWI), whereas that in the cerebrospinal fluid was the lowest. The average ADC was the highest in the cerebrospinal fluid, whereas the lowest measurement was derived from the pons. The average SI and ADC were higher in $T_2^*$-DW-EPI than in FLAIR-DW-EPI. The higher the b-value, the smaller the average difference in both imaging techniques; the lower the b-value, the greater the average difference. Also, comparative analysis of the brains of patients who had experienced cerebral infarction showed no distinct lesion in the general MR image over time. However, there was a high SI in apparent weighted images. Analysis of other brain diseases (e.g., bleeding, acute, subacute, chronic infarction) indicated SI variance in accordance with characteristics of the two techniques. The higher the SI, the lower the ADC. Taken together, the value of SI and ADC in accordance with frequently occurring areas and various brain disease varies based on the b-value and imaging technique. Because they provide additional useful information in the diagnosis and treatment of patients with various brain diseases through signal recognition, the proper imaging technique and b-value are important for the detection and interpretation of subacute stroke and other brain diseases.

  • PDF