• Title/Summary/Keyword: Brain tissue-mask

Search Result 6, Processing Time 0.019 seconds

Brain Extraction of MR Images

  • Du, Ruoyu;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.455-458
    • /
    • 2010
  • Extracting the brain from magnetic resonance imaging head scans is an essential preprocessing step of which the accuracy greatly affects subsequent image analysis. The currently popular Brain Extraction Tool produces a brain mask which may be too smooth for practical use to reduce the accuracy. This paper presents a novel and indirect brain extraction method based on non-brain tissue segmentation. Based on ITK, the proposed method allows a non-brain contour by using region growing to match with the original image naturally and extract the brain tissue. Experiments on two set of MRI data and 2D brain image in horizontal plane and 3D brain model indicate successful extraction of brain tissue from a head.

Gaussian Filtering Effects on Brain Tissue-masked Susceptibility Weighted Images to Optimize Voxel-based Analysis (화소 분석의 최적화를 위해 자화감수성 영상에 나타난 뇌조직의 가우시안 필터 효과 연구)

  • Hwang, Eo-Jin;Kim, Min-Ji;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.4
    • /
    • pp.275-285
    • /
    • 2013
  • Purpose : The objective of this study was to investigate effects of different smoothing kernel sizes on brain tissue-masked susceptibility-weighted images (SWI) obtained from normal elderly subjects using voxel-based analyses. Materials and Methods: Twenty healthy human volunteers (mean $age{\pm}SD$ = $67.8{\pm}6.09$ years, 14 females and 6 males) were studied after informed consent. A fully first-order flow-compensated three-dimensional (3D) gradient-echo sequence ran to obtain axial magnitude and phase images to generate SWI data. In addition, sagittal 3D T1-weighted images were acquired with the magnetization-prepared rapid acquisition of gradient-echo sequence for brain tissue segmentation and imaging registration. Both paramagnetically (PSWI) and diamagnetically (NSWI) phase-masked SWI data were obtained with masking out non-brain tissues. Finally, both tissue-masked PSWI and NSWI data were smoothed using different smoothing kernel sizes that were isotropic 0, 2, 4, and 8 mm Gaussian kernels. The voxel-based comparisons were performed using a paired t-test between PSWI and NSWI for each smoothing kernel size. Results: The significance of comparisons increased with increasing smoothing kernel sizes. Signals from NSWI were greater than those from PSWI. The smoothing kernel size of four was optimal to use voxel-based comparisons. The bilaterally different areas were found on multiple brain regions. Conclusion: The paramagnetic (positive) phase mask led to reduce signals from high susceptibility areas. To minimize partial volume effects and contributions of large vessels, the voxel-based analysis on SWI with masked non-brain components should be utilized.

Assessment of the Cerebrospinal Fluid Effect on the Chemical Exchange Saturation Transfer Map Obtained from the Full Z-Spectrum in the Elderly Human Brain

  • Park, Soonchan;Jang, Joon;Oh, Jang-Hoon;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.139-149
    • /
    • 2019
  • Purpose: With neurodegeneration, the signal intensity of the cerebrospinal fluid (CSF) in the brain increases. The objective of this study was to evaluate chemical exchange saturation transfer (CEST) signals with and without the contribution of CSF signals in elderly human brains using two different 3T magnetic resonance imaging (MRI) sequences Methods: Full CEST signals were acquired in ten subjects (Group I) with a three-dimensional (3D)-segmented gradient-echo echo-planar imaging (EPI) sequence and in ten other subjects (Group II) with a 3D gradient and spin-echo (GRASE) sequence using two different 3T MRI systems. The segmented tissue compartments of gray and white matter were used to mask the CSF signals in the full CEST images. Two sets of magnetization transfer ratio asymmetry (MTRasym) maps were obtained for each offset frequency in each subject with and without masking the CSF signals (masked and unmasked conditions, respectively) and later compared using paired t-tests. Results: The region-of-interest (ROI)-based analyses showed that the MTRasym values for both the 3D-segmented gradient-echo EPI and 3D GRASE sequences were altered under the masked condition compared with the unmasked condition at several ROIs and offset frequencies. Conclusions: Depending on the imaging sequence, the MTRasym values can be overestimated for some areas of the elderly human brain when CSF signals are unmasked. Therefore, it is necessary to develop a method to minimize this overestimation in the case of elderly patients.

Voxel-based Investigations of Phase Mask Effects on Susceptibility Weighted Images (화소 간 분석을 이용하여 자화율 가중 영상(SWI)에 나타난 위상 마스킹의 효과 분석)

  • Hwang, Eo-Jin;Kim, Min-Ji;Kim, Hyug-Gi;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • To investigate effects of phase mask on susceptibility-weighted images (SWI) using voxel-based analyses in normal elderly subjects. A three-dimensional (3D) gradient echo sequence ran to obtain SWIs in 20 healthy elderly subjects. SWIs with two (SWI2) and four (SWI4) phase multiplications were achieved with positive (PSWI) and negative (NSWI) phase masks to investigate phase mask effects. The voxel-based comparisons were performed using paired t-tests between PSWI and NSWI and between SWI2 and SWI4. Differences of signal intensities between magnitude images and SWI4 were larger than those between magnitude images and SWI2s. Differences of signal intensities between magnitude images and PSWIs were larger than those between magnitude images and NSWIs. Moreover, the signal intensities from NSWI2s and NSWI4s were greater than those from PSWI2s and PSWI4s, respectively. More differences of signal intensities between NSWI4 and PSWI4s were found than those between NSWI2s and PSWI2s in the whole brain images. The voxel-based analyses of SWI could be beneficial to investigate susceptibility differences on the entire brain areas. The phase masking method could be chosen to enhance brain tissue contrast rather than to enhance venous blood vessels. Therefore, it is recommended to apply voxel-based analyses of SWI to investigate clinical applications.

Comparison of Three Different Helmet Bolus Device for Total Scalp Irradiation (Total Scalp의 방사선 치료 시 Helmet Bolus 제작방법에 관한 연구)

  • Song, Yong-Min;Kim, Jong-Sik;Hong, Chae-Seon;Ju, Sang-Gyu;Park, Ju-Young;Park, Su-Yeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • Purpose: This study evaluated the usefulness of Helmet bolus device using Bolx-II, paraffin wax, solid thermoplastic material in total scalp irradiation. Materials and Methods: Using Rando phantom, we applied Bolx-II (Action Products, USA), paraffin wax (Densply, USA), solid thermoplastic material (Med-Tec, USA) on the whole scalp to make helmet bolus device. Computed tomography (GE, Ultra Light Speed16) images were acquired at 5 mm thickness. Then, we set up the optimum treatment plan and analyzed the variation in density of each bolus (Philips, Pinnacle). To evaluate the dose distribution, Dose-homogeneity index (DHI, $D_{90}/D_{10}$) and Conformity index (CI, $V_{95}/TV$) of Clinical Target Volume (CTV) using Dose-Volume Histogram (DVH) and $V_{20}$, $V_{30}$ of normal brain tissues. we assessed the efficiency of production process by measuring total time taken to produce. Thermoluminescent dosimeters (TLD) were used to verify the accuracy. Results: Density variation value of Bolx-II, paraffin wax, solid thermoplastic material turned out to be $0.952{\pm}0.13g/cm^3$, $0.842{\pm}0.17g/cm^3$, $0.908{\pm}0.24g/cm^3$, respectively. The DHI and CI of each helmet bolus device which used Bolx-II, paraffin wax, solid thermoplastic material were 0.89, 0.85, 0.77 and 0.86, 0.78, 0.74, respectively. The result of Bolx-II was the best. $V_{20}$ and $V_{30}$ of brain tissues were 11.50%, 10.80%, 10.07% and 7.62%, 7.40%, 7.31%, respectively. It took 30, 120, 90 minutes to produce. The measured TLD results were within ${\pm}7%$ of the planned values. Conclusion: The application of helmet bolus which used Bolx-II during total scalp irradiation not only improves homogeneity and conformity of Clinical Target Volume but also takes short time and the production method is simple. Thus, the helmet bolus which used Bolx-II is considered to be useful for the clinical trials.

  • PDF

Dose Planning of Forward Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer using Compensating Filters (보상여과판을 이용한 비인강암의 전방위 강도변조 방사선치료계획)

  • Chu Sung Sil;Lee Sang-wook;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.

  • PDF