• Title/Summary/Keyword: Brain mechanisms

Search Result 489, Processing Time 0.024 seconds

Biochemical and molecular features of LRRK2 and its pathophysiological roles in Parkinson's disease

  • Seol, Won-Gi
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.233-244
    • /
    • 2010
  • Parkinson's disease (PD) is the second most common neurodegenerative disease, and 5-10% of the PD cases are genetically inherited as familial PD (FPD). LRRK2 (leucine-rich repeat kinase 2) was first reported in 2004 as a gene corresponding to PARK8, an autosomal gene whose dominant mutations cause familial PD. LRRK2 contains both active kinase and GTPase domains as well as protein-protein interaction motifs such as LRR (leucine-rich repeat) and WD40. Most pathogenic LRRK2 mutations are located in either the GTPase or kinase domain, implying important roles for the enzymatic activities in PD pathogenic mechanisms. In comparison to other PD causative genes such as parkin and PINK1, LRRK2 exhibits two important features. One is that LRRK2's mutations (especially the G2019S mutation) were observed in sporadic as well as familial PD patients. Another is that, among the various PD-causing genes, pathological characteristics observed in patients carrying LRRK2 mutations are the most similar to patients with sporadic PD. Because of these two observations, LRRK2 has been intensively investigated for its pathogenic mechanism (s) and as a target gene for PD therapeutics. In this review, the general biochemical and molecular features of LRRK2, the recent results of LRRK2 studies and LRRK2's therapeutic potential as a PD target gene will be discussed.

Polymorphisms of the Dopamine Receptor Genes in Alcoholism (알코올 중독에서의 도파민 수용체 유전자 다형성)

  • Ryu, Seung Ho
    • Korean Journal of Biological Psychiatry
    • /
    • v.9 no.1
    • /
    • pp.15-24
    • /
    • 2002
  • Even though alcoholism is a multi-factorial psychiatric disorder, it is reasonable to suppose that genetic factors play a substantial role in the manifestation of this disorder. Because alcohol is the reinforcing substance which manifests its effects through activation of the mesolimbic dopaminergic reward pathway of the brain, the gene encoding dopamine receptor subtypes can be a major natural candidate gene. Since 1990, many association studies have identified strong evidence implicating the dopamine D2 receptor(DRD2) gene in alcoholism, specifically TaqI A minor(A1) allele. Association studies have also been conducted on other dopamine receptor(DRD3 & DRD4) polymorphisms but the results have yet to be confirmed. Through a number of other approaches, each dopamine receptor gene has been investigated in association with different phenotypes in alcoholism, but further researches will be needed. In conclusion, studies in the past decade have shown that the TaqI A1 allele of the DRD2 gene is associated with alcoholism in various subject groups. Other dopamine receptor genes have since been added to the list but yet to be identified. Thus, the knowledge of these genes and their functional significance will enhance the understanding of the underlying biological mechanisms of alcoholism. Furthermore, it could lead to more helpful prevention and treatment approaches to alcoholism.

  • PDF

Cytisine, a Partial Agonist of α4β2 Nicotinic Acetylcholine Receptors, Reduced Unpredictable Chronic Mild Stress-Induced Depression-Like Behaviors

  • Han, Jing;Wang, Dong-sheng;Liu, Shui-bing;Zhao, Ming-gao
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.291-297
    • /
    • 2016
  • Cytisine (CYT), a partial agonist of ${\alpha}4{\beta}2-nicotinic$ receptors, has been used for antidepressant efficacy in several tests. Nicotinic receptors have been shown to be closely associated with depression. However, little is known about the effects of CYT on the depression. In the present study, a mouse model of depression, the unpredictable chronic mild stress (UCMS), was used to evaluate the activities of CYT. UCMS caused significant depression-like behaviors, as shown by the decrease of total distances in open field test, and the prolonged duration of immobility in tail suspension test and forced swimming test. Treatment with CYT for two weeks notably relieved the depression-like behaviors in the UCMS mice. Next, proteins related to depressive disorder in the brain region of hippocampus and amygdala were analyzed to elucidate the underlying mechanisms of CYT. CYT significantly reversed the decreases of 5-HT1A, BDNF, and mTOR levels in the hippocampus and amygdala. These results imply that CYT may act as a potential anti-depressant in the animals under chronic stress.

Extraneural Metastasis of Glioblastoma Multiforme Presenting as an Unusual Neck Mass

  • Seo, Young-Jun;Cho, Won-Ho;Kang, Dong-Wan;Cha, Seung-Heon
    • Journal of Korean Neurosurgical Society
    • /
    • v.51 no.3
    • /
    • pp.147-150
    • /
    • 2012
  • Glioblastoma multiforme(GBM) is the most aggressive intracranial tumor and it commonly spreads by direct extension and infiltration into the adjacent brain tissue and along the white matter tract. The metastatic spread of GBM outside of the central nervous system (CNS) is rare. The possible mechanisms of extraneural metastasis of the GBM have been suggested. They include the lymphatic spread, the venous invasion and the direct invasion through dura and bone. We experienced a 46-year-old man who had extraneural metastasis of the G8M on his left neck. The patient was treated with surgery for 5 times, radiotherapy and chemotherapy. He had survived 6 years since first diagnosed. Although the exact mechanism of the extraneural metastasis is not well understood, this present case shows the possibility of extraneural metastasis of the G8M, especially in patients with long survival.

Heat Shock Proteins as Molecular Chaperons in Neuropsychiatry (열충격 단백질의 신경정신의학적 의의와 중요성)

  • Oh, Dong-Hoon;Yang, Byung-Hwan;Choi, Joonho
    • Korean Journal of Biological Psychiatry
    • /
    • v.14 no.4
    • /
    • pp.221-231
    • /
    • 2007
  • Recent researches have shown that important cellular-based autoprotective mechanisms are mediated by heat-shock proteins(HSPs), also called 'molecular chaperones'. HSPs as molecular chaperones are the primary cellular defense mechanism against damage to the proteome, initiating refolding of denatured proteins and regulating degradation after severe protein damage. HSPs also modulate multiple events within apoptotic pathways to help sustain cell survival following damaging stimuli. HSPs are induced by almost every type of stresses including physical and psychological stresses. Our nervous system in the brain are more vulnerable to stress and damage than any other tissues due to HSPs insufficiency. The normal function of HSPs is a key factor for endogenous stress adaptation of neural tissues. HSPs play an important role in the process of neurodevelopment, neurodegeneration, and neuroendocrine regulation. The altered function of HSPs would be associated with the development of several neuropsychiatric disorders. Therefore, an understanding of HSPs activities could help to improve autoprotective mechanism of our neural system. This paper will review the literature related to the significance of HSPs in neuropsychiatric field.

  • PDF

Modulation of Corydalis tuber on Glycine-induced Ion Current in Acutely Dissociated Rat Periaqueductal Gray Neuron

  • Cheong, Byung-Shik;Nam, Sang-Soo;Choi, Do-Young
    • The Journal of Korean Medicine
    • /
    • v.24 no.4
    • /
    • pp.34-42
    • /
    • 2003
  • This study was designed to investigate the modulation of the Corydalis tuber on glycine-activated ion current in rat periaqueductal gray (PAG) neurons. Aqueous extract from Corydalis tuber has been widely used for pain control such as dysmenorrhea, irregular menstruation or amenorrhea with abdominal cramping, neuralgia, headache and gastrointestinal spasm. The PAG region of the brain is known to be involved heavily with nociception. Modulation of the Corydalis tuber on glycine-induced ion current in rat periaqueductal gray (PAG) neurons was studied by a nystatin-perforated patch-clamp technique. High concentrations of Corydalis tuber elicited ion current, which was suppressed by strychnine application. Low concentrations of Corydalis tuber reduced glycine-induced ion currents in the PAG neurons. Inhibitory action of Corydalis tuber on glycine-activated ion current was reduced by treatment with naltrexone, a non- selective opioid antagonist. Application of N-methylmalemide (NEM), a sulfhydryl alkylating agent, also reduced the inhibitory action of Corydalis tuber on glycine-activated ion current in the PAG neurons. These results suggest that the inhibitory effect of Corydalis tuber on glycine-activated ion current in the PAG neurons is one of the analgesic mechanisms of the Corydalis tuber, which may activate descending pain control system in PAG neurons.

  • PDF

Effect of Mild Hypothermia on the Mitogen Activated Protein Kinases in Experimental Stroke

  • Han, Hyung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.187-194
    • /
    • 2004
  • Middle cerebral artery occlusion (MCAO) results in cell death by activation of complex signal pathways for cell death and survival. Hypothermia is a robust neuroprotectant, and its effect has often been attributed to various mechanisms, but it is not yet clear. Upstream from the cell death promoters and executioners are several enzymes that may activate several transcription factors involved in cell death and survival. In this study, we immunohistochemically examined the phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase during early period of the ischemic injury, following 2 hours (h) of transient MCAO. Increased phosphorylation of ERK and p38 was observed in the vessels at 3 h, neuron-like cells at 6 and 12 h and glia-like cells at 12 h. Activation of JNK was not remarkable, and a few cells showed active JNK following ischemia. Phosphorylation of Elk-1, a transcription factor, was reduced by ischemic insult. Hypothermia attenuated the activation of ERK, p38 and JNK, and inhibited reduction of Elk-1. These data suggest that signals via different MAPK family members converge on the cell damage process and hypothermia protects the brain by interfering with these pathways.

The Causes and Developmental Mechanism of Insomnia (불면증의 원인과 발생기전)

  • Lee, Sung-Hoon
    • Sleep Medicine and Psychophysiology
    • /
    • v.1 no.1
    • /
    • pp.3-8
    • /
    • 1994
  • With the recent development of sleep medicine, insomnia has been perceived as a disease from a simple symptom. As there are various causes in a disease, proper treatment according to each cause is necessary for a more effective treatment In general, insomnia is classified into five categrories of physical, physiological, psychological, psychiatric and pharmacological aspects. However, such categorizations are often insufficient in treating insomnia. Furthermore understanding of the developmental mechanisms of insomnia is required. The function of sleep is developed and maintained through the balance of the reciprocal forces of sleep and arousal. These forces are contantly regulated by what is called a circadian rhythm. Sleep is induced by this rhythm which is affected by factors such as awakening time in the morning, amount of intellectual function, amount and time length of physical exercise and sunlight Insomnia could develop when this rhythm is delayed and leads to a "forbidden zone" which is a very difficult period for inducing sleep about two to four hours before the routine bedtime. Whereas sleep gradually develops in line with the circardian rhythm, arousal can occur very abruptly by any cause triggered by emotional discomfort or anxiety. Such characteristic and emotional factors as perfectionism, separation anxiety, secondary gain, insecurity, and negative cognition may provoke the inner anxiety and fear for insomnia, which can lead acute insomnia to a chronic one. As chronic insomnia is developed by multiple causes and factors, integrated approaches through analysis of above mentioned factors will be more effective in the treatment of insomnia than a simple administration of hypnotics.

  • PDF

Enzymatic DNA oxidation: mechanisms and biological significance

  • Xu, Guo-Liang;Walsh, Colum P.
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.609-618
    • /
    • 2014
  • DNA methylation at cytosines (5mC) is a major epigenetic modification involved in the regulation of multiple biological processes in mammals. How methylation is reversed was until recently poorly understood. The family of dioxygenases commonly known as Ten-eleven translocation (Tet) proteins are responsible for the oxidation of 5mC into three new forms, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Current models link Tet-mediated 5mC oxidation with active DNA demethylation. The higher oxidation products (5fC and 5caC) are recognized and excised by the DNA glycosylase TDG via the base excision repair pathway. Like DNA methyltransferases, Tet enzymes are important for embryonic development. We will examine the mechanism and biological significance of Tet-mediated 5mC oxidation in the context of pronuclear DNA demethylation in mouse early embryos. In contrast to its role in active demethylation in the germ cells and early embryo, a number of lines of evidence suggest that the intragenic 5hmC present in brain may act as a stable mark instead. This short review explores mechanistic aspects of TET oxidation activity, the impact Tet enzymes have on epigenome organization and their contribution to the regulation of early embryonic and neuronal development.

Downregulation of Foxe1 by HR suppresses Msx1 expression in the hair follicles of HrHp mice

  • Choi, Jee-Hyun;Kim, Byong-Kyu;Kim, Jeong-Ki;Lee, Hwa-Young;Park, Jong-Keun;KimYoon, Sung-Joo
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.478-483
    • /
    • 2011
  • Hairless (HR), a transcriptional cofactor, is highly expressed in the skin and brain. To characterize the effects of HR expression in the skin, we examined its capacity for transcriptional regulation of its target genes in mouse skin and keratinocytes. We found that Foxe1 mRNA expression was suppressed in HR-overexpressing skin, as well as in HR-expressing keratinocytes. In turn, Msx1 expression was downregulated contingent on Foxe1 downregulation in skin and keratinocytes. We also found that expression of Sfrp1 was also correlated with that of Foxe1. Further investigation of the mechanisms involved in the transcriptional regulation of these genes will facilitate our understanding of the relationship among genes involved in hair follicle morphogenesis and cycling.