• 제목/요약/키워드: Brain mechanisms

검색결과 489건 처리시간 0.025초

우울증의 새로운 신경생물학 (The New Neurobiology of Depression)

  • 김용구
    • 생물정신의학
    • /
    • 제8권1호
    • /
    • pp.3-19
    • /
    • 2001
  • Recent basic and clinical studies demonstrate a major role for neural plasticity in the etiology and treatment of depression and stress-related illness. The neural plasticity is reflected both in the birth of new cell in the adult brain(neurogenesis) and the death of genetically healthy cells(apoptosis) in the response to the individual's interaction with the environment. The neural plasticity includes adaptations of intracellular signal transduction pathway and gene expression, as well as alterations in neuronal morphology and cell survival. At the cellular level, repeated stress causes shortening and debranching of dendrite in the CA3 region of hippocampus and suppress neurogenesis of dentate gyrus granule neurons. At the molecular level, both form of structural remodeling appear to be mediated by glucocorticoid hormone working in concert with glutamate and N-methyl-D-aspartate(NMDA) receptor, along with transmitters such as serotonin and GABA-benzodiazepine system. In addition, the decreased expression and reduced level of brain-derived neurotrophic factor(BDNF) could contribute the atrophy and decreased function of stress-vulnerable hippocampal neurons. It is also suggested that atrophy and death of neurons in the hippocampus, as well as prefrontal cortex and possibly other regions, could contribute to the pathophysiology of depression. Antidepressant treatment could oppose these adverse cellular effects, which may be regarded as a loss of neural plasticity, by blocking or reversing the atrophy of hippocampal neurons and by increasing cell survival and function via up-regulation of cyclic adenosine monophosphate response element-binding proteins(CREB) and BDNF. In this article, the molecular and cellular mechanisms that underlie stress, depression, and action of antidepressant are precisely discussed.

  • PDF

PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation

  • Im, Jun Hyung;Yeo, In Jun;Hwang, Chul Ju;Lee, Kyung Sun;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • 제28권2호
    • /
    • pp.152-162
    • /
    • 2020
  • Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce in vivo ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An in vitro study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.

Ginsenoside Rg3 Alleviates Lipopolysaccharide-Induced Learning and Memory Impairments by Anti-Inflammatory Activity in Rats

  • Lee, Bombi;Sur, Bongjun;Park, Jinhee;Kim, Sung-Hun;Kwon, Sunoh;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제21권5호
    • /
    • pp.381-390
    • /
    • 2013
  • The purpose of this study was to examine whether ginsenoside Rg3 (GRg3) could improve learning and memory impairments and inflammatory reactions induced by injecting lipopolysaccharide (LPS) into the brains of rats. The effects of GRg3 on proinflammatory mediators in the hippocampus and the underlying mechanisms of these effects were also investigated. Injection of LPS into the lateral ventricle caused chronic inflammation and produced deficits in learning in a memory-impairment animal model. Daily administration of GRg3 (10, 20, and 50 mg/kg, i.p.) for 21 consecutive days markedly improved the LPS-induced learning and memory disabilities demonstrated on the step-through passive avoidance test and Morris water maze test. GRg3 administration significantly decreased expression of pro-inflammatory mediators such as tumor necrosis factor-${\alpha}$, interleukin-1${\beta}$, and cyclooxygenase-2 in the hippocampus, as assessed by reverse transcription-polymerase chain reaction analysis and immunohistochemistry. Together, these findings suggest that GRg3 significantly attenuated LPS-induced cognitive impairment by inhibiting the expression of pro-inflammatory mediators in the rat brain. These results suggest that GRg3 may be effective for preventing or slowing the development of neurological disorders, including Alzheimer's disease, by improving cognitive and memory functions due to its anti-inflammatory activity in the brain.

Genome-Wide Identification of Haploinsufficiency in Fission Yeast

  • Baek, Seung-Tae;Han, Sang-Jo;Nam, Mi-Young;Kim, Young-Dae;Kim, Li-La;Lee, Hyun-Jee;Heo, Kyung-Sun;Lee, Hye-Mi;Lee, Min-Ho;Park, Song-Kyu;Maeng, Pil-Jae;Park, Young-Woo;Lee, Sung-Hou
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1059-1063
    • /
    • 2008
  • Abnormal phenotypes resulting from haploinsufficiency (HI) are due to the loss of one allele. Recent studies in budding yeast have shown that HI originates from insufficient protein levels or from a stoichiometric imbalance between subunits of protein complexes. In humans, however, HI often involves transcription factors. Therefore, the species differences in HI and the molecular mechanisms of species-specific HI remain under investigation. In this study, HI in fission yeast was systematically surveyed. HI in fission yeast affected genes related to signaling and to basic cellular processes, as observed in budding yeast. These results suggest that there are species differences in HI and that the HI that occurs in fission yeast is intermediate to HI in budding yeast and humans.

Alpha-Asarone, a Major Component of Acorus gramineus, Attenuates Corticosterone-Induced Anxiety-Like Behaviours via Modulating TrkB Signaling Process

  • Lee, Bombi;Sur, Bongjun;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권3호
    • /
    • pp.191-200
    • /
    • 2014
  • We investigated the anxiolytic-like activity of ${\alpha}$-asarone (AAS) from Acorus gramineus in an experimental rat model of anxiety induced by repeated administration of the exogenous stress hormone corticosterone (CORT). The putative anxiolytic effect of AAS was studied in behavioral tests of anxiety, such as the elevated plus maze (EPM) test and the hole-board test (HBT) in rats. For 21 consecutive days, male rats received 50, 100, or 200 mg/kg AAS (i.p.) 30 min prior to a daily injection of CORT. Dysregulation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. Daily AAS (200 mg/kg) administration increased open-arm exploration significantly in the EPM test, and it increased the duration of head dipping activity in the HBT. It also blocked the increase in tyrosine hydroxylase (TH) expression in the locus coeruleus (LC) and decreased mRNA expression of brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, in the hippocampus. These results indicated that the administration of AAS prior to high-dose exogenous CORT significantly improved anxiety-like behaviors, which are associated with modification of the central noradrenergic system and with BDNF function in rats. The current finding may improve understanding of the neurobiological mechanisms responsible for changes in emotions induced by repeated administration of high doses of CORT or by elevated levels of hormones associated with chronic stress. Thus, AAS did exhibit an anxiolytic-like effects in animal models of anxiety.

Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.581-588
    • /
    • 2016
  • Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of anti-oxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurode-generative diseases that are associated with oxidative stress.

The Effect of Growth Hormone on mRNA Expression of the GABAB1 Receptor Subunit and GH/IGF Axis Genes in a Mouse Model of Prader-Willi Syndrome

  • Lee, Jin Young;Jin, Dong-Kyu
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • 제1권2호
    • /
    • pp.54-59
    • /
    • 2015
  • Purpose: Growth hormone (GH) therapy substantially improves several cognitive functions in PWS. However, the molecular mechanisms underlying the beneficial effects of GH on cognition remain unclear in PWS. In this study, we investigated the effects of recombinant human GH on the gene expression of GABAB receptor subunits and GH/insulin-like growth factor (IGF) axis genes in the brain regions of PWS-mimicking mice (Snord116del). Methods: Snord116del mice were injected subcutaneously with 1.0 mg/kg GH or saline, once daily for 7 days. The collected brain tissues were analyzed for mRNA content using quantitative PCR (qPCR) in the cerebellum, hippocampus, and cerebral cortex. Results: GH increased the mRNA expression level of the $GABA_{B1}$ receptor subunit ($GABA_{BR1}$) and IGF-1R in the cerebellum. Furthermore, a significant positive correlation was found between the level of $GABA_{BR1}$ mRNA and the expression of the IGF-1R transcript. GH also induced an increase in the mRNA expression of IGF-2 and IGF-2R in the cerebellum. Conclusion: These data indicate that GH may provide beneficial effects on cognitive function through its influences on the expression of $GABA_{BR1}$ and GH/IGF-1 axis genes in PWS patients.

Molecular Mechanism of Dietary Restriction in Neuroprevention and Neurogenesis: Involvement of Neurotrophic Factors

  • Park, Hee-Ra;Park, Mi-Kyung;Kim, Hyung-Sik;Lee, Jae-Won
    • Toxicological Research
    • /
    • 제24권4호
    • /
    • pp.245-251
    • /
    • 2008
  • Dietary restriction (DR) is the most efficacious intervention for retarding the deleterious effects of aging. DR increases longevity, decreases the occurrence and severity of age-related diseases, and retards the physiological decline associated with aging. The beneficial effects of DR have been mostly studied in non-neuronal tissues. However, several studies have showed that DR attenuate neuronal loss after several different insults including exposure to kainate, ischemia, and MPTP. Moreover, administration of the non-metabolizable glucose analog 2-deoxy-D-glucose (2DG) could mimic the neuroprotective effect of DR in rodent, presumably by limiting glucose availability at the cellular level. Based on the studies of chemically induced DR, it has been proposed that the mechanism whereby DR and 2DG protect neurons is largely mediated by stress response proteins such as HSP70 and GRP78 which are increased in neurons of rats and mice fed a DR regimen. In addition, DR, as mild metabolic stress, could lead to the increased activity in neuronal circuits and thus induce expression of neurotrophic factors. Interestingly, such increased neuronal activities also enhance neurogenesis in the brains of adult rodents. In this review, we focus on what is known regarding molecular mechanisms of the protective role of DR in neurodegenerative diseases and aging process. Also, we propose that DR is a mild cellular stress that stimulates production of neurotrophic factors, which are major regulators of neuronal survival, as well as neurogenesis in adult brain.

Phenotypic Characterization of MPS IIIA (Sgshmps3a/ Sgshmps3a) Mouse Model

  • Park, Sung Won;Ko, Ara;Jin, Dong-kyu
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • 제4권1호
    • /
    • pp.26-36
    • /
    • 2018
  • Mucopolysaccharidosis IIIA is a heritable neurodegenerative disorder resulting from the dysfunction of the lysosomal hydrolase sulphamidase. This leads to the primary accumulation of the complex carbohydrate heparan sulphate in a wide range of tissues and CNS degeneration. Characterization of animal model is the beginning point of the therapeutic clinical trial. Mouse model has a limitation in that it is not a human and does not have all of the disease phenotypes. Therefore, delineate of the phenotypic characteristics of MPS IIIA mouse model prerequisite for the enzyme replace treatment for the diseases. We designed 6-month duration of phenotypic characterization of MPS IIIA mouse biochemically, behaviorally and histologically. We compared height and weight of MPS IIIA mouse with wild type from 4 weeks to 6 months in both male and female. At 6 months, we measured GAG storage in urine kidney, heart, liver, lung and spleen. The brain GAG storage is presented with Alcian blue staining, immunohistochemistry, and electron-microscopy. The neurologic phenotype is evaluated by brain MRI and behavioral study including open field test, fear conditioning, T-maze test and Y-maze test. Especially behavioral tests were done serially at 4month and 6month. This study will show the result of the MPS IIIA mouse model phenotypic characterization. The MPS IIIA mouse provides an excellent model for evaluating pathogenic mechanisms of disease and for testing treatment strategies, including enzyme or cell replacement and gene therapy.

육미지황탕(六味地黃湯)으로 호전시킨 원발성 과수면장애 환자 1례(例) (The Effect of YukMiGiHwangTang on Idiopathic Hypersomnia -1-Case Report-)

  • 김민상;유병찬;김종국;심재철;김종원;최영;김윤식;설인찬;오병열
    • 대한한방내과학회지
    • /
    • 제25권4호
    • /
    • pp.383-390
    • /
    • 2004
  • The most common causes of severe sleepiness beginning or progressively worsening in adults are SLEEP APNEA and RELATED BREATHING DISORDERS DURING SLEEP. Idiopathic hypersomnia is excessive sleeping without obvious cause. Idiopathic hypersomnia diagnosis can be explained as follows: One could be chronically sleepy due to either something wrong with sleep that makes it non-refreshing, or a problem with the brain mechanisms which normally should keep one alert whether caused by primary problems within the brain or its chemistry, or by other factors (such as sedating medications or thyroid problems). A 71-year-old male who had suffered from excessive sleeping was admitted to our department for oriental treatment on 7th of July, 2003. He was diagnosed as an idiopathic hypersomnia for excessive sleeping without obvious cause. Initial treatment modalities with administration of "SoonHwanGi1HoBang(循環器1號方)" were not effective. However, after administration of "YukMiGiHwangTang(六味地黃湯)" desirable effects were seen.

  • PDF