• Title/Summary/Keyword: Brain mechanisms

Search Result 492, Processing Time 0.028 seconds

Neuroprotective & antioxidant effects of diets high in n-6 and n-3 fatty acids in rat focal brain ischemia model (N-6와 n-3 지방산이 풍부한 식이가 뇌졸중 유발 모델에서 뇌경색 크기 및 항산화 효소계에 미치는 영향)

  • Lee, Hee-Joo;Park, Kyoung-Ae;Park, Myoung-Sook;Lee, Joung-Hee;Cheon, Sang-Eun;Cheo, Myoung-Ae;Choi, S-Mi
    • Journal of Korean Biological Nursing Science
    • /
    • v.3 no.1
    • /
    • pp.41-52
    • /
    • 2001
  • This study was undertaken to investigate the effects of n-6(corn oil) & n-3(fish oil) fatty acids on infarction size and the cerebral activities of antioxidant enzyme in rat focal brain ischemia model. Weaning Sprague-Dawley rats were fed with either corn oil supplemented diet(COD, 14% corn oil) or fish oil supplemented diet(FOD, 14% menhaden oil) for 6 weeks. The right middle cerebral artery was occluded for 2 hours with a silicon rubber coated nylon surgical thread. After 24 hours of recirculation, the rats were sacrificed and brain sections were photographed using CCD camera after staining with 2, 3, 5-triphenyltetrazolium chloride for 60 minutes in room temperature. The infarcted area was measured and the volume of infarction was calculated. Catalase(CAT), superoxide dismutase(SOD) activities, and fatty acid composition in the brain were also measured. The total and corrected infarction volumes were not significantly different between FOD and COD group. The docosagexaenoic acid(DHA) and DHA content/arachidonic acid(AA) ratio of the cerebral cortex, an index of defense against lipid oxidation, were significantly increased in FOD group compared to those of COD group(p<0.05). In the left cortex(non-infarction side) as well as the right cortex(infarction side) of FOD group, CAT and Cu/Zn SOD activities were higher than those of the COD group(p<0.05). However, CAT and Cu/Zn SOD activities were not significantly different between the left cortex(non-infarction side) and the right cortex(infarction side) of both FOD and COD group. GPx activities were also not significantly different between two groups. Our results demonstrate that the brain infarction size in FOD and COD were not significantly different. However, cerebral lipid composition and antioxidant enzyme activities in FOD and COD group were different. Fish oil, a source of n-3 polyunsaturated fatty acid(PUFA) and corn oil, that of n-6(PUFA) may have a protective effect against oxidative stress induced via different mechanisms.

  • PDF

Protective Effects of Traditional Korean Medicine Preparations, Herbs, and Active Compounds on the Blood-brain Barrier in Ischemic Stroke Models (허혈성 뇌졸중 모델에서 혈액-뇌 장벽에 보호효과를 나타내는 한약처방, 한약재 및 활성화합물)

  • Shin, Su Bin;Jang, Seok Ju;Lee, Na Gyeong;Choi, Byung Tae;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.550-566
    • /
    • 2022
  • Stroke is among the leading causes of death and long-term physical and cognitive disabilities worldwide, affecting an estimated 15 million people annually. The pathophysiological process of stroke is complicated by multiple and coordinated events. The breakdown of the blood-brain barrier (BBB) in people with stroke can significantly contribute to the development of ischemic brain injury. Therefore, BBB disruption is recognized as a hallmark of stroke; thus, it is important to develop novel therapeutic strategies that can protect against BBB dysfunction in ischemic stroke. Traditional medicines are composed of natural products, which represent a promising source of new ingredients for the development of conventional medicines. Indeed, several studies have shown the effectiveness of Korean medicine on stroke, highlighting the value of Korean medicinal treatment for ischemic stroke. This review summarizes the current information and underlying mechanisms regarding the ameliorating effects of the formula, decoction, herbs, and active components of traditional Korean medicine on cerebral ischemia-induced BBB disruption. These traditional medicines were shown to have protective effects on the BBB in many cellular and animal ischemia models of stroke, and experiments in various animal species, such as mice and rats. In addition, they showed brain-protective effects by protecting the BBB through the regulation of tight junction proteins and matrix metalloproteinase-9, reducing edema, neuroinflammation, and neuronal cell death. We hope that this review will help promote further investigation into the neuroprotective effects of traditional Korean medicines and stimulate the performance of clinical trials on Korean herbal medicine-derived drugs in patients with stroke.

Genome-wide Drug-induced Haploinsufficiency Screening of Fission Yeast for Identification of Hydrazinocurcumin Targets

  • Baek, Seung-Tae;Kim, Dong-Uk;Han, Sang-Jo;Woo, Im-Sun;Nam, Mi-Young;Kim, Li-La;Heo, Kyung-Sun;Lee, Hye-Mi;Hwang, Hye-Rim;Choi, Shin-Jung;Won, Mi-Sun;Lee, Min-Ho;Park, Song-Kyu;Lee, Sung-Hou;Kwon, Ho-Jeong;Maeng, Pil-Jae;Park, Hee-Moon;Park, Young-Woo;Kim, Dong-Sup;Hoe, Kwang-Lae
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.263-269
    • /
    • 2008
  • Hydrazinocurcumin (HC), a synthetic derivative of curcumin, has been reported to inhibit angiogenesis via unknown mechanisms. Understanding the molecular mechanisms of the drug's action is important for the development of improved compounds with better pharmacological properties. A genome-wide drug-induced haploinsufficiency screening of fission yeast gene deletion mutants has been applied to identify drug targets of HC. As a first step, the 50% inhibition concentration $(IC_{50})$ of HC was determined to be $2.2{\mu}M$. The initial screening of 4,158 mutants in 384-well plates using robotics was performed at concentrations of 2, 3, and $4{\mu}M$. A second screening was performed to detect sensitivity to HC on the plates. The first screening revealed 178 candidates, and the second screening resulted in 13 candidates, following the elimination of 165 false positives. Final filtering of the condition-dependent haploinsufficient genes gave eight target genes. Analysis of the specific targets of HC has shown that they are related to septum formation and the general transcription processes, which may be related to histone acetyltransferase. The target mutants showed 65% growth inhibition in response to HC compared with wild-type controls, as shown by liquid culture assay.

Expression Patterns of Ki-67, Cyclin A, and Cyclin D1 during Tooth Development (치아발생 과정 중에 Ki-67, 싸이클린 A, 싸이클린 D1의 발현양상)

  • Kwon, Hyuk-Jae;Yoon, Kyung-Sik;Jung, Han-Sung
    • Anatomy & Biological Anthropology
    • /
    • v.26 no.1
    • /
    • pp.41-49
    • /
    • 2013
  • Dental epithelial and mesenchymal cells that form the teeth undergo dynamic changes in cell cycle during tooth development and morphogenesis. Although proliferation has been known as a key event during odontogenesis, the cell cycle phases and their relations with the complicated molecular mechanisms of tooth development are not fully understood yet. This study comparatively examined the expression patterns of Ki-67, cyclin A, and cyclin D1 during tooth development in the mouse incisor and molar in order to identify the cell-cycle characteristics during odontogenesis. We found that Ki-67 and cyclin A were expressed in the proliferating cells in the dental epithelial and mesenchymal tissues at the bud, cap and bell stages. Cycln D1 showed distinct expression in the incisor odontoblast region and the enamel knot, in which Ki-67 nor cyclin A was expressed. Our results provide specific information on the cell cycle phases during tooth development that may provide clues to relate them with the complex odontogenic mechanisms. Furthermore, we suggest that our findings enlightened the previous studies on the incisor odontoblasts and the enamel knot during tooth development.

Electrophysiological Analysis of GABA and Glycine Action on Neurons of the Catfish Retina

  • Bai, Sun-Ho;Jung, Chang-Sub;Lee, Sung-Jong
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.163-174
    • /
    • 1993
  • Vertebrate retinal neurons, like brain tracts farm complex synaptic relations in the enter and inner plexiform layers which ape equivalent to the central nervous system nuclei. The effects of $\gamma-aminobutyric$ acid(GABA) and glycine on retinal neurons were explored to discern the mechanisms of action of neurotransmitters. Experiments were performed in the superfused retina-eyecup preparation of the channel catfish, Ictalurus punctatus, using intracellular electrophysiological techniques. The roles of GABA and glycine as inhibitory neurotransmitters are well established in the vertebrate retina. But, we found that the depolarizing action of GABA and glycine on third-order neurons in the catfish retina. GABA and glycine appeared to act on retinal ueurons based on the observations that (1) effects on photoreceptors were not observed, (2) horizontal cells were either hyperpolarized $({\sim}33%)$ or depolarized $({\sim}67%)$, (3) bipolar cells were all hyperpolarized (4) amacrine and ganglion cells were either hyperpolarized $({\sim}37%)$ or depolarized $({\sim}63%)$, (5) GABA and glycine may be working to suppress presynaptic inhibition. The results suggest that depolarization of third-order neurons by GABA and glycine is due to at least two mechanisms; a direct postsynaptic effect and an indirect effect. Therefore, in the catfish retina, a mechanism of presynaptic inhibition or disinhibition including the direct postsynaptic effect may exist in the third-order neurons.

  • PDF

Expression of Neuropeptide Y(NPY) and NADPH-diaphorase Neurons in the Hypothalamus and Cerebral Cortex of Fasting and Anorexia Mutant Mice(anx/anx). (절식시킨 생쥐와 식욕부진 돌연변이 생쥐의 시상하부와 대뇌겉질에서 Neuropeptide Y와 NADPH-diaphorase의 이중면역조직화학법에 의한 발현)

  • 김미자
    • Journal of Nutrition and Health
    • /
    • v.33 no.5
    • /
    • pp.491-496
    • /
    • 2000
  • Food intake is regulated by both central and peripheral mechanisms. In the central nervous, the hypothalamus acts for autonomic and endocrine homeostasis. The paraventricular nucleus(PVN) of hypothalamus is an imprtant site of interaction in central feeding pathways. Neuroepetide Y(NPY)is one of the most powerful neurochemical stimulants of food intake known. Also brain nitric oxide(NO), known as neurotransmitter, is involved in the mechanisms that regulate food intake. In this experiment, 24h fasting mice and anorexia mutant mice have been to examine the expression of NPY, which is the major neuropeptide increasing food intake. Double staining with NPY and nicotinamide-adenine-dinucleotide-phosphate diaphorase(NADPH-d), followed by immunohistochemical method and image analysis, have been used to observe coexisting neurons and the level of expression of each neurons. The results were as follows. 1) NPY-immunoreactivitys reduced immune response of the hypothalamus, particularly paraventricular nucleus(PVN), in anorexia mutant mice. Decreased level of NPY is assumed to be a major pathological factor in anorexia mutant mice. On the other hand, PVN in hypothalamus of fasting mice showed increased immunoreactivity which is in agreement of other researchers. 2) NPY and NADPH-d double staining revealed coexisting neurons in the cerebral cortex. Fasting mice had a tendency to have increased level of coexisting neurons compared to the control group. Compared to the control group, fasting mice express is not increase level of NPY-immunoreactivity, while anorexia mutant mice tended to have a decreased level.

  • PDF

Deciphering the molecular mechanisms underlying the plasma membrane targeting of PRMT8

  • Park, Sang-Won;Jun, Yong-Woo;Choi, Ha-Eun;Lee, Jin-A;Jang, Deok-Jin
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.601-606
    • /
    • 2019
  • Arginine methylation plays crucial roles in many cellular functions including signal transduction, RNA transcription, and regulation of gene expression. Protein arginine methyltransferase 8 (PRMT8), a unique brain-specific protein, is localized to the plasma membrane. However, the detailed molecular mechanisms underlying PRMT8 plasma membrane targeting remain unclear. Here, we demonstrate that the N-terminal 20 amino acids of PRMT8 are sufficient for plasma membrane localization and that oligomerization enhances membrane localization. The basic amino acids, combined with myristoylation within the N-terminal 20 amino acids of PRMT8, are critical for plasma membrane targeting. We also found that substituting Gly-2 with Ala [PRMT8(G2A)] or Cys-9 with Ser [PRMT8(C9S)] induces the formation of punctate structures in the cytosol or patch-like plasma membrane localization, respectively. Impairment of PRMT8 oligomerization/dimerization by C-terminal deletion induces PRMT8 mis-localization to the mitochondria, prevents the formation of punctate structures by PRMT8(G2A), and inhibits PRMT8(C9S) patch-like plasma membrane localization. Overall, these results suggest that oligomerization/dimerization plays several roles in inducing the efficient and specific plasma membrane localization of PRMT8.

Molecular Mechanisms of Inner Ear Development and Disease

  • Hayoung Yang;Jiho Ryu;Sungbo Shim
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.95-102
    • /
    • 2023
  • The inner ear constitutes a complex organ responsible for auditory perception and equilibrium. It comprises diverse cellular entities operating collaboratively to perceive and transmit sensory information to the brain. Inner ear disease is a sophisticated and multifactorial scenario substantially impacting the quality of life of affected individuals. Gaining insights into the developmental process of the inner ear is crucial for diagnosing and treating inner ear diseases, which can lead to hearing loss and impaired balance. Recent research in inner ear development and associated pathophysiology has focused on several pivotal domains, including identifying new genes and signaling pathways involved in inner ear development, using stem cells for inner ear regeneration, and developing novel therapies for inner ear diseases. Recent advances in genetics research have shed new light on the fundamental etiologies of inner ear diseases, with a growing body of evidence suggesting that genetic mutations might exert a pivotal influence on the development and progression of this condition. In this review, we have delved into certain common genetic mutations linked to inner ear disorders. We also discussed ongoing research endeavors and future directions for understanding the genetic mechanisms underlying this condition and potential therapeutic avenues.

Inhibitory effect of carvacrol on lipopolysaccharide-induced memory impairment in rats

  • Lee, Bombi;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.27-37
    • /
    • 2020
  • Neuroinflammation is an important process underlying a wide variety of neurodegenerative diseases. Carvacrol (CAR) is a phenolic monoterpene commonly used as a food additive due to its antibacterial properties, but it has also been shown to exhibit strong antioxidative, anti-inflammatory, and neuroprotective effects. Here, we sought to investigate the effects of CAR on inflammation in the hippocampus and prefrontal cortex, as well as the molecular mechanisms underlying these effects. In our study, lipopolysaccharide was injected into the lateral ventricle of rats to induce memory impairment and neuroinflammation. Daily administration of CAR (25, 50, and 100 mg/kg) for 21 days improved recognition, discrimination, and memory impairments relative to untreated controls. CAR administration significantly attenuated expression of several inflammatory factors in the brain, including interleukin-1β, tumor necrosis factor-α, and cyclooxygenase-2. In addition, CAR significantly increased expression of brain-derived neurotrophic factor (BDNF) mRNA, and decreased expression of Toll-like receptor 4 (TLR4) mRNA. Taken together, these results show that CAR can improve memory impairment caused by neuroinflammation. This cognitive enhancement is due to the anti-inflammatory effects of CAR medicated by its regulation of BDNF and TLR4. Thus, CAR has significant potential as an inhibitor of memory degeneration in neurodegenerative diseases.

Patterns of the peripheral nerve injury on expression of brain-derived neurotrophic factor in dorsal root ganglia and spinal cord in rats (말초신경손상이 척수후근신경절 및 척수에서 Brain-derived neurotrophic factor 발현에 미치는 양상)

  • Ha, Sun-Ok;Hong, Hae-Sook
    • Journal of Korean Biological Nursing Science
    • /
    • v.4 no.1
    • /
    • pp.101-112
    • /
    • 2002
  • Peripheral nerve injury results in plastic changes in the dorsal ganglia (DRG) and spinal cord, and is often complicated with neuropathic pain. The mechanisms underlying these changes are not known, but these changes seem to be most likely related to the neurotrophic factors. This study investigated the effects of mechanical peripheral nerve injury on expression of brain-derived neurotrophic factor(BDNF) in the DRG and spinal cord in rats. 1) Bennett model and Chung model groups showed significantly increased percentage of small, medium and large BDNF-immunoreactive neurons in the ipsilateral $L_4$ DRG compared with those in the contralateral side at 1 and 2 weeks of the injury. 2) In the ipsilateral $L_5$ DRG of the Chung model, percentage of medium and large BDNF-immunoreactive neurons increased significantly at 1 week, whereas that of large BDNF-immunoreactive neurons decreased at 2 week when compared with those in the contralateral side. The intensity of immunoreactivity of each neuron was lower in the ipsilateral than in the contralateral DRG. 3) In the spinal cord, the Bennett and Chung model groups showed a markedly increased BDNF-immunoreactivity in axonal fibers of both superficial and deeper laminae. The present study demonstrates that peripheral nerve injury in neuropathic models altered the BDNF expression in the DRG and spinal cord. This may suggest important roles of BDNF in sensory abnormalities after nerve injury and in protecting the large-sized neurons in the damaged DRG.

  • PDF