• Title/Summary/Keyword: Brain ischemic damage

Search Result 167, Processing Time 0.078 seconds

Effects of Seongpung-tang on the NO Production of Primary Microglial Cell (성풍탕이 미세아교세포의 NO 생성에 미치는 영향)

  • 성강경;임창용;이상관
    • The Journal of Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.91-98
    • /
    • 2000
  • The water extract of Seongpungtang(SPT) has commonly been used for treatment of ischemic brain damage in Oriental traditional medicine. However, little is known about the mechanism by which the water extract of SPT rescues brain cells from ischemic damage. To elucidate the protective mechanism of ischemic induced cytotoxicity, the regulation of Lipopolysaccharide (LPS) and PMA (phobol-12-myristate-13-acetate) induced iNOS expression in microglial cells was investigated. LPS and PMA treatment for 48 hr in microglial cells markedly induced nitric oxide (NO), but treatment of the cells with the water extract of SPT decreased nitrite formation. In addition, LPS and PMA treatment for 48 hr induced severe cell death in microglial cells. However treatment of the cells with the water extract of SPT did not induce significant changes compared to the control cells. Furthermore, NO production was markedly decreased by treatment of nuclear factor kappa B(NF-kB) inhibitor, pyrrolidine dithiocarbamate(PDTC). According to the above results, it is suggested that the protective effects of the water extract of SPT against ischemic brain damage may be mediated by regulation of iNOS during ischemic condition.

  • PDF

Effects of Samul-tang-gamibang against Focal Cerebral Ischemic Damage by Middle Cerebral Artery Occulusion of Rats (사물탕가미방이 백서의 좌우 중대뇌 동맥 폐쇄에 의한 뇌허혈 손상의 회복에 미치는 효과)

  • 서창훈;김영균;권정남
    • The Journal of Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.117-128
    • /
    • 2004
  • Objectives : This research was performed to investigate effect of Samul-tang-gamibang against focal cerebral ischemic damage after middle cerebral artery occlusion(MCAO). Methods : This research was used rats which were against focal cerebral ischemic damage by MCAO. It was used Zea Longa's theory and Belayev's methods to give rise to focal cerebral ischemic damage by MCAO. After 7days later, we drew out the brain and then had frozen and dyeing it and we had taken a picture to measure of the damaged area in each brain section. We determined the Neurological Index and tested the Foot-fault test and Roatated test to appraise the fall of motion ability result from cerebral ischemic damage. Results : The results of the experiment are as follows. 1. Samul-tang-gamibang reduced infarct size of sample group compared to control group at 7 day after MCAO. 2. Samul-tang-gamibang reduced infarct volume of sample group compared to control group at 7 day after MCAO. 3. Samul-tang-gamibang reduced foot-fault index of sample group compared to control group at 5,7 day after MCAO. Conclusions : Samul-tang-gamibang has protective effects against ischemic brain damage and had significant reduced infarct size and infarct volume of Rt-MCAO.

  • PDF

Protective Effects of Gamiheechum-tang(Jiaweixiqian-tang) on Hypertension and Brain Damage (가미치첨탕이 고혈압 및 뇌손상에 미치는 효과)

  • Ryu, Jong-Sam;Kim, Dong-Hee;Park, Jong-O;Namgung, UK;Hong, Seok
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.72-83
    • /
    • 2003
  • Objective : The goal of the present study was to investigate the protective effect of Gamiheechum-tang (Jiaweixiqian-tang; GHCT) on brain tissue damage from chemical or ischemic insults. Methods : Levels of cultured cortical neuron death caused by toxic chemicals were measured by LDH release assay. Neuroprotective effects of GHCT on brain tissues were examined in vivo by ischemic model of middle cerebral artery (MCA) occlusion. Results : Animal groups treated with GBCT showed significantly decreased hypertension, and reduced levels of aldosterone, dopamine, and epinephrine in the plasma. GHCT treatments ($l0-200\mu\textrm{g}/ml$) significantly decreased cultured cortical neuron death mediated by AMPA, kainate, BSO, or Fe2+ when measured by LDH release assay. Yet, cell death mediated by NMDA was effectively protected by GHCT at the highest concentration examined ($200\mu\textrm{g}/ml$). In the in vivo experiment examining brain damage by MCA occlusion, affected brain areas by ischemic damage and edema were significantly less in animal groups administered with GHCT compared to the non-treated control group. Neurological examinations of forelimbs and hindlimbs showed that GHCT treatment improved animals' recovery from ischemic injury. Moreover, the extent of injury in cortical and hippocampal pyramidal neurons in ischemic rats was much reduced by GHCT, whose morphological features were similarly observed in non-ischemic animals. Conclusion : The present data suggest that GBCT may play an important role in protecting brain tissues from chemical or ischemic injuries.

  • PDF

Effects of Purgative Action with Natrii Sulfas on Bax and HSP72 Expressions of the MCAO Rat Brain (망초(芒硝)의 사하작용(瀉下作用)이 MCAO 흰쥐 뇌조직의 Bax 및 HSP72 발현에 미치는 영향)

  • Kim, Kon-Sik;Kim, Bum-Hoi;Lee, Dong-Eun;Yang, Kee-Young;Kim, Seong-Joon;Kang, Hee;Sohn, Nak-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.818-824
    • /
    • 2009
  • This study aimed to evaluate the effect of purgation therapy with Natrii sulfas, a therapy for stroke patients with constipation in the oriental medicine, on the ischemic brain damage of the rats. The ischemic brain damage was induced by the middle cerebral artery occlusion (MCAO), Natrii sulafas was administered once after the MCAO. After 48 hours, expressions of Bax, Bcl-2, c-Fos, and HSP72 on the brain tissues were observed by immunohistochemistrical methods or technique. Purgation therapy with Natrii sulfas attenuated the excess of Bax expression caused by the ischemic brain damage. It was significant statistically in the penumbra of cerebral cortex, but not in the caudate putamen, of the MCAO rats. Purgation therapy with Natrii sulfas did not attenuate the excess of Bcl-2 expression caused by the ischemic brain damage. Purgation therapy with Natrii sulfas did not attenuate the excess of c-Fos expression caused by the ischemic brain damage. Purgation therapy with Natrii sulfas attenuated the excess of HSP72 expression caused by the ischemic brain damage. It was significant statistically in the penumbra of cerebral cortex, but not in the caudate putamen, of the MCAO rats. These results suggest that purgation therapy with Natrii sulfas has a neuroprotective effect on the ischemic brain damage and an anti-apoptotic effect.

Estrogen Mediates Ischemic Damage and the Migration of Human Umbilical Cord Blood Cells

  • Kim, Jee-Yun;Yu, Seong-Jin;Kim, Do-Rim;Youm, Mi-Young;Lee, Chae-Kwan;Kang, Sung-Goo
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.71-71
    • /
    • 2003
  • Human umbilical cord blood cells(HUCBC) are rich in mesenchymal progenitor cells, endothelial cell precursors and hematopoietic cells. HUCBC have been used as a source of transplantable stem and progenitor cells. However, little is known about survival and development of HUCBC transplantation in the CNS. Estrogen has a neuroprotective potential against oxidative stress-induced cell death so has an effect on reducing infarct size of ischemic brain. We investigated the potential use of HUCBC as donor cells and tested whether estrogen mediates intravenously infused HUCBC enter and survive in ischemic brain. PKH26 labeled mononuclear fraction of HUCBC were injected into the tail vein of ischemic OVX rat brain with or without $17\beta$-estradiol valerate(EV). Under fluorescence microscopy, labeled cells were observed in the brain section. Significantly more cells were found in the ischemic brain than in the non-ischemic brain. HUCBC transplanted into ischemic brain could migrate and survive. Some of cells have shown neuronal like cells in hippocampus, striatum and cortex tissues. These result suggest that estrogen reduces ischemic damage and increases the migration of human umbilical cord blood cells. This Study was supported by the Korea Science and Engineering Foundation(KOSEF) though the Biohealth Products Research Center(BPRC), Inje University, Korea.

  • PDF

Effects of Sokmyeung-tang(SMT) on the Protection of C6 Glial Cells and Ischemic Brain Damage (속명탕(續命湯)이 C6 glial cell 보호 및 허혈성 뇌손상에 미치는 영향)

  • An, Ga-Yong;Choi, Eun-Hee;Kim, In-Soo;Kang, Seong-Sun;Lee, Young-Soo;Hong, Seok;Jeon, Sang-Yun
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.43-55
    • /
    • 2011
  • Objectives : Sokmyeung-tang(SMT) has been used for treatment of CVA in traditional oriental medicine, so this study was designed to evaluate the effect of SMT's protection on brain cell damage against the oxidative stress that was affected by CVA, We also investigated the effect of motor function improvement and neurotrophic factor in ischemic cerebral damaged rats. Methods : We measured cell viability after administrating SMT, chemicals(Paraquat, SNP, rotenone, and $H_2O_2$) which cause oxidative stress, and both SMT and chemicals. We carried out neurobehavioral evaluation(Rotarod test, Beam-walking test, postural reflex test) and observed BDNF (brain-derived neurotrophic factor) expression by injecting SMT into ischemic cerebral damaged rat. Results : Through this study, we observed the following three results. First, brain cell death caused by paraquat, rotenone, and $H_2O_2$ significantly decreased with the treatment of SMT. Second, neuronal movement function in ischemic cerebral damaged rats was significantly improved by the treatment of SMT. Third, BDNF in ischemic cerebral damaged rats increased with the treatment of SMT. Conclusions : SMT protects brain cells from damage induced by oxidative stress (Paraquat, rotenone, $H_2O_2$). SMT also improves neuronal movement function and increases BDNF in ischemic cerebral damaged rats.

Effects of Sebsaeng-eum(Shesengyin) on the NO Production of $C_6$ Glial Cell (섭생음이$C_6$ glial 세포의 NO 생성에 미치는 영향)

  • 임창용;김요한;박세홍;이소영;이상관;성강경
    • The Journal of Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.84-92
    • /
    • 2000
  • Objectives : The water extract of Sebsaeng-eum(SheShengYin) has been used for treatment of ischemic brain damage in oriental medicine, However, little is known about the mechanism by which the water extract of Sebsaeng-eum(SheShengYin) rescues brain cells from ischemic damages. Methods : To elucidate the protective mechanism on ischemic induced cytotoxicity, We investigated the regulation of LPS and PMA induced iNOS expression in $C_{6}$ glial cells. Results : LPS and PMA treatment for 48 h in $C_{6}$ glial cells markedly induced NO, but treatment of the cells with the water extract of Sebsaeng-eum(SheShengYin) decreased nitrite formation. In addition, LPS and PMA treatment for 48 h induced severe cell death in $C_{6}$ glial cells. However treatment of the cells with the water extract of Sebsaeng-eum(SheSheng Yin) did not induce significant changes compared to the control. LPS and PMA induced iNOS activation in $C_{6}$ glial cells caused chromosomal condensation and fragmentation of nuclei. Conclusions : Taken together, We suggest that the protective effects of the water extract of Sebsaeng-eum(SheShengYin) against ischemic brain damages may be mediated by regulation of iNOS during ischemic condition.

  • PDF

Curcumin targets vascular endothelial growth factor via activating the PI3K/Akt signaling pathway and improves brain hypoxic-ischemic injury in neonatal rats

  • Li, Jia;An, Yan;Wang, Jia-Ning;Yin, Xiao-Ping;Zhou, Huan;Wang, Yong-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.423-431
    • /
    • 2020
  • This study aimed to evaluate the effect of curcumin on brain hypoxic-ischemic (HI) damage in neonatal rats and whether the phosphoinositide 3-kinase (PI3K)/Akt/vascular endothelial growth factor (VEGF) signaling pathway is involved. Brain HI damage models were established in neonatal rats, which received the following treatments: curcumin by intraperitoneal injection before injury, insulin-like growth factor 1 (IGF-1) by subcutaneous injection after injury, and VEGF by intracerebroventricular injection after injury. This was followed by neurological evaluation, hemodynamic measurements, histopathological assessment, TUNEL assay, flow cytometry, and western blotting to assess the expression of p-PI3K, PI3K, p-Akt, Akt, and VEGF. Compared with rats that underwent sham operation, rats with brain HI damage showed remarkably increased neurological deficits, reduced right blood flow volume, elevated blood viscosity and haematocrit, and aggravated cell damage and apoptosis; these injuries were significantly improved by curcumin pretreatment. Meanwhile, brain HI damage induced the overexpression of p-PI3K, p-Akt, and VEGF, while curcumin pretreatment inhibited the expression of these proteins. In addition, IGF-1 treatment rescued the curcumin-induced down-regulated expression of p-PI3K, p-Akt, and VEGF, and VEGF overexpression counteracted the inhibitory effect of curcumin on brain HI damage. Overall, pretreatment with curcumin protected against brain HI damage by targeting VEGF via the PI3K/Akt signaling pathway in neonatal rats.

Protective Effects of Nueihyuljunbang on LPS Combined PMA Induced Cytotocity in C6 Gilal Cell (LPS와 PMA에 손상된 신경교세포에 대한 뇌혈전방의 방어효과)

  • 서관수;문병순;성강경;임규상;신선호
    • The Journal of Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2001
  • Objectives : The water extract of Nueihyuljunbang (NHJB) has long been used for treatment of ischemic brain damage in Oriental Medicine. However, little is known about the mechanism by which the water extract of NHJB recovers brain cens from ischemic damage. Methods : To elucidate the protective mechanism on ischemic induced cytotoxicity, we investigated the regulation of lipopolysaccharide (LPS) and phorbol-12-myristate-13-acetate (PMA)-induced inducible nitric oxide synthase (iNOS) expression in C6 glial cells. Results : LPS combined PMA treatment for 72 hours in C6 glial cells markedly induced nitric oxide (NO), but treatment of the cells with the water extract of NHJB decreased dose-dependently nitrite formation. In addition, LPS combined PMA treatment for 72 hours induced severe celt death and lactate dehydrogenase (LDH) release in C6 glial cells. However, treatment of the celts with the water extract of NHJB did not induce significant change compared to control cells. Furthermore, the protective effects of the water extract of NHJB were mimicked by the treatment of NGMMA, a specific inhibitor of NOS. LPS combined PMA induced iNOS activation in C6 glial cells caused chromosomal condensation and fragmentation of the nuclei by caspase activation. The treatment of C6 glial cells with the water extract of NHJB might suppress apoptosis via caspase inhibition by regulation of iNOS expression. Conclusions : From the results, we suggest that the protective effects of the water extract of NHJB against ischemic brain damage may be mediated by regulation of iNOS during ischemic condition.

  • PDF

Lysophosphatidic Acid Receptor 1 Plays a Pathogenic Role in Permanent Brain Ischemic Stroke by Modulating Neuroinflammatory Responses

  • Supriya Tiwari;Nikita Basnet;Ji Woong Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.319-328
    • /
    • 2024
  • Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in brain injury following a transient brain ischemic stroke. However, its role in permanent brain ischemic stroke remains unknown. To address this, we investigated whether LPA1 could contribute to brain injury of mice challenged by permanent middle cerebral artery occlusion (pMCAO). A selective LPA1 antagonist (AM152) was used as a pharmacological tool for this investigation. When AM152 was given to pMCAO-challenged mice one hour after occlusion, pMCAO-induced brain damage such as brain infarction, functional neurological deficits, apoptosis, and blood-brain barrier disruption was significantly attenuated. Histological analyses demonstrated that AM152 administration attenuated microglial activation and proliferation in injured brain after pMCAO challenge. AM152 administration also attenuated abnormal neuroinflammatory responses by decreasing expression levels of pro-inflammatory cytokines while increasing expression levels of anti-inflammatory cytokines in the injured brain. As underlying effector pathways, NF-κB, MAPKs (ERK1/2, p38, and JNKs), and PI3K/Akt were found to be involved in LPA1-dependent pathogenesis. Collectively, these results demonstrate that LPA1 can contribute to brain injury by permanent ischemic stroke, along with relevant pathogenic events in an injured brain.