• Title/Summary/Keyword: Brain imaging

Search Result 1,392, Processing Time 0.023 seconds

White Matter Lesions Predominantly Located in Deep White Matter Represent Embolic Etiology Rather Than Small Vessel Disease

  • Young Hee Jung;Seongbeom Park;Na Kyung Lee;Hyun Jeong Han;Hyemin Jang;Hee Jin Kim;Sang Won Seo;Duk Lyul Na
    • Dementia and Neurocognitive Disorders
    • /
    • v.22 no.1
    • /
    • pp.28-42
    • /
    • 2023
  • Background and Purpose: We investigated the correlation between the deep distribution of white matter hyperintensity (WMH) (dWMH: WMH in deep and corticomedullary areas, with minimal periventricular WMH) and a positive agitated saline contrast echocardiography result. Methods: We retrospectively recruited participants with comprehensive dementia evaluations, an agitated saline study, and brain imaging. The participants were classified into two groups according to WMH-distributions: dWMH and dpWMH (mainly periventricular WMH with or without deep WMH.) We hypothesized that dWMH is more likely associated with embolism, whereas dpWMH is associated with small-vessel diseases. We compared the clinical characteristics, WMH-distributions, and positive rate of agitated saline studies between the two groups. Results: Among 90 participants, 27 and 12 met the dWMH and dpWMH criteria, respectively. The dWMH-group was younger (62.2±7.5 vs. 78.9±7.3, p<0.001) and had a lower prevalence of hypertension (29.6% vs. 75%, p=0.008), diabetes mellitus (3.7% vs. 25%, p=0.043), and hyperlipidemia (33.3% vs. 83.3%, p=0.043) than the dpWMH-group. Regarding deep white matter lesions, the number of small lesions (<3 mm) was higher in the dWMH-group(10.9±9.7) than in the dpWMH-group (3.1±6.4) (p=0.008), and WMH was predominantly distributed in the border-zones and corticomedullary areas. Most importantly, the positive agitated saline study rate was higher in the dWMH-group than in the dpWMH-group (81.5% vs. 33.3%, p=0.003). Conclusions: The dWMH-group with younger participants had fewer cardiovascular risk factors, showed more border-zone-distributions, and had a higher agitated saline test positivity rate than the dpWMH-group, indicating that corticomedullary or deep WMH-distribution with minimal periventricular WMH suggests embolic etiologies.

Overview of Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes (MELAS) syndrome (멜라스 증후군의 개요)

  • Ji-Hoon Na;Young-Mock Lee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episode (MELAS) is a rare maternally inherited disorder primarily caused by mutations in mitochondrial DNA, notably the m.3243A>G mutation in the MT-TL1 gene. This mutation impairs mitochondrial function crucial for cellular energy production, particularly in high-energy-demanding organs such as the brain and muscles. MELAS manifests as recurrent stroke-like episodes, seizures, diabetes mellitus, cardiomyopathy, and other multisystemic symptoms that are often present in childhood. The diagnosis combines genetic testing, clinical evaluation, and neuroimaging, with elevated lactate levels and characteristic magnetic resonance imaging (MRI) findings as key indicators. Treatment focuses on symptomatic management and enhancement of mitochondrial function through L-arginine, coenzyme Q10, high-dose vitamins, and taurine supplementation. Studies have identified additional genetic variants linked to MELAS, including mutations in POLG and other mitochondrial genes, further complicating the genetic landscape. Emerging therapies, particularly gene therapy and mitochondria-targeting drugs, offer promising avenues for addressing the underlying genetic defects and improving mitochondrial functioning. Furthermore, ongoing studies continue to enhance our understanding and management of MELAS, with the aim of reducing its burden and improving patient outcomes and quality of life. This review summarizes the current knowledge on the genetics, clinical features, diagnosis, and treatment of MELAS, highlighting the latest advancements and future directions for therapeutic interventions.

  • PDF

Clinical Characteristics of Recurred Patients with Stage I,II Non-Small Cell Lung Cancer (근치적 절제 후 재발한 1,2기 비소세포폐암 환자의 임상상)

  • Ham, Hyoung-Suk;Kang, Soo-Jung;An, Chang-Hyeok;Ahn, Jong-Woon;Kim, Ho-Cheol;Lim, Si-Young;Suh, Gee-Young;Kim, Kwhan-Mien;Chung, Man-Pyo;Kim, Ho-Joong;Kim, Jhin-Gook;Kwon, O-Jung;Shim, Yong-Mog;Rhee, Choong-H.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.4
    • /
    • pp.428-437
    • /
    • 2000
  • Background : Five year survival rate of postoperative stage I non-small cell lung cancer(NSCLC) reaches to 66%. In the remaining one third of patients, however, cancer recurs and the overall survival of NSCLC remains dismal. To evaluate clinical and pathologic characteristics of recurred NSCLC, the patterns and factors for postoperative recurrence in patients with staged I and II NSCLC were studied. Method : A retrospective analysis was performed in 234 patients who underwent radical resection for pathologic stage I and II NSCLC. All patients who were followed up for at least one year were included in this study. Results : 1) There were 177 men and 57 women The median age was 63. The median duration of the follow up period was 732 days (range 365~1,695 days). The overall recurrence rate was 26.5%, and the recurrence occurred $358.8{\pm}239.8$ days after operation. 2) The ages of recurred NSCLC patients were higher ($63.2{\pm}8.8$ years) than those of non-recurred patients ($60.3{\pm}9.8$ years)(p=0.043). The recurrence rate was higher in stage II (46.9%) than in stage I (18.8%) NSCLC p<0.001. The size of primary lung mass was larger in recurred ($5.45{\pm}3.22\;cm$) than that of non-recurred NSCLC ($3.74{\pm}1.75\;cm$, p<0.001). Interestingly, there were no recurrent cases when the resected primary tumor was less than 2cm. 3) Distant recurrence was more frequent than locoregional recurrence (66.1% vs. 33.9%). Distant recurrence rate was higher in females and in cases of adenocarcinoma. Brain metastasis was more frequent in patients with adenocarcinoma than in those with squamous cell carcinoma (p=0.024). Conclusion: The tumor size and stage were two important factors for determining the possibility of a recurrence. Because distant brain metastasis was more frequent in patients with adenocarinoma, a prospective study should be conducted to evaluate the effectiveness of preoperative brain imaging.

  • PDF

Visualization and Localization of Fusion Image Using VRML for Three-dimensional Modeling of Epileptic Seizure Focus (VRML을 이용한 융합 영상에서 간질환자 발작 진원지의 3차원적 가시화와 위치 측정 구현)

  • 이상호;김동현;유선국;정해조;윤미진;손혜경;강원석;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • In medical imaging, three-dimensional (3D) display using Virtual Reality Modeling Language (VRML) as a portable file format can give intuitive information more efficiently on the World Wide Web (WWW). The web-based 3D visualization of functional images combined with anatomical images has not studied much in systematic ways. The goal of this study was to achieve a simultaneous observation of 3D anatomic and functional models with planar images on the WWW, providing their locational information in 3D space with a measuring implement using VRML. MRI and ictal-interictal SPECT images were obtained from one epileptic patient. Subtraction ictal SPECT co-registered to MRI (SISCOM) was performed to improve identification of a seizure focus. SISCOM image volumes were held by thresholds above one standard deviation (1-SD) and two standard deviations (2-SD). SISCOM foci and boundaries of gray matter, white matter, and cerebrospinal fluid (CSF) in the MRI volume were segmented and rendered to VRML polygonal surfaces by marching cube algorithm. Line profiles of x and y-axis that represent real lengths on an image were acquired and their maximum lengths were the same as 211.67 mm. The real size vs. the rendered VRML surface size was approximately the ratio of 1 to 605.9. A VRML measuring tool was made and merged with previous VRML surfaces. User interface tools were embedded with Java Script routines to display MRI planar images as cross sections of 3D surface models and to set transparencies of 3D surface models. When transparencies of 3D surface models were properly controlled, a fused display of the brain geometry with 3D distributions of focal activated regions provided intuitively spatial correlations among three 3D surface models. The epileptic seizure focus was in the right temporal lobe of the brain. The real position of the seizure focus could be verified by the VRML measuring tool and the anatomy corresponding to the seizure focus could be confirmed by MRI planar images crossing 3D surface models. The VRML application developed in this study may have several advantages. Firstly, 3D fused display and control of anatomic and functional image were achieved on the m. Secondly, the vector analysis of a 3D surface model was defined by the VRML measuring tool based on the real size. Finally, the anatomy corresponding to the seizure focus was intuitively detected by correlations with MRI images. Our web based visualization of 3-D fusion image and its localization will be a help to online research and education in diagnostic radiology, therapeutic radiology, and surgery applications.

  • PDF

Effects of the Variability of Individual Data on the Group Results; an Acupuncture Study Using fMRI (기능적 자기공명영상을 이용한 침 연구에 있어서 개체 별 다양성이 그룹분석에 미치는 영향 연구)

  • Bae, Seong-In;Jahng, Geon-Ho;Ryu, Chang-Woo;Lim, Sabina
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.277-289
    • /
    • 2009
  • Recently, functional MRI has been used to investigate the neurobiological mechanisms of acupuncture and the specificity of acupoint. The group data tend to be regarded as more important than the individual data in the most of previous studies. This study was designed to investigate the effect of the variability of individual data on the group results. A functional MRI (fMRI) of the whole brain was performed in fifteen healthy subjects during placebo and acupuncture stimulations at the ST36 acupoint. After remaining at rest for 30 seconds, the acupuncture was inserted and twisted at the rate of 2 Hz for 45 seconds and then the acupuncture was removed immediately. This process was repeated three times. Individual and group analyses were performed by voxel-based analyses using SPM2 software. Visual inspections of the activation and deactivation maps from individual sessions have shown the large variability across fifteen subjects. This means that the group data reflected the brain activation responses of only a few subjects. We suggest that the individual data should be presented to demonstrate the effect of acupuncture.

  • PDF

Development and Performance Evaluation of an Animal SPECT System Using Philips ARGUS Gamma Camera and Pinhole Collimator (Philips ARGUS 감마카메라와 바늘구멍조준기를 이용한 소동물 SPECT 시스템의 개발 및 성능 평가)

  • Kim, Joong-Hyun;Lee, Jae-Sung;Kim, Jin-Su;Lee, Byeong-Il;Kim, Soo-Mee;Choung, In-Soon;Kim, Yu-Kyeong;Lee, Won-Woo;Kim, Sang-Eun;Chung, June-Key;Lee, Myung-Chul;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.445-455
    • /
    • 2005
  • Purpose: We developed an animal SPECT system using clinical Philips ARGUS scintillation camera and pinhole collimator with specially manufactured small apertures. In this study, we evaluated the physical characteristics of this system and biological feasibility for animal experiments. Materials and Methods: Rotating station for small animals using a step motor and operating software were developed. Pinhole inserts with small apertures (diameter of 0.5, 1.0, and 2.0 mm) were manufactured and physical parameters including planar spatial resolution and sensitivity and reconstructed resolution were measured for some apertures. In order to measure the size of the usable field of view according to the distance from the focal point, manufactured multiple line sources separated with the same distance were scanned and numbers of lines within the field of view were counted. Using a Tc-99m line source with 0.5 mm diameter and 12 mm length placed in the exact center of field of view, planar spatial resolution according to the distance was measured. Calibration factor to obtain FWHM values in 'mm' unit was calculated from the planar image of two separated line sources. Te-99m point source with i mm diameter was used for the measurement of system sensitivity. In addition, SPECT data of micro phantom with cold and hot line inserts and rat brain after intravenous injection of [I-123]FP-CIT were acquired and reconstructed using filtered back protection reconstruction algorithm for pinhole collimator. Results: Size of usable field of view was proportional to the distance from the focal point and their relationship could be fitted into a linear equation (y=1.4x+0.5, x: distance). System sensitivity and planar spatial resolution at 3 cm measured using 1.0 mm aperture was 71 cps/MBq and 1.24 mm, respectively. In the SPECT image of rat brain with [I-123]FP-CIT acquired using 1.0 mm aperture, the distribution of dopamine transporter in the striatum was well identified in each hemisphere. Conclusion: We verified that this new animal SPECT system with the Phlilps ARGUS scanner and small apertures had sufficient performance for small animal imaging.

An Estimation of the Efficiency and Satisfaction for EEG Practice Using the Training 10-20 Electrode System: A Questionnaire Survey (연습용 10-20 Electrode System을 이용한 뇌파검사 실습의 효율성과 만족도 평가)

  • Lee, Chang Hee;Kim, Dae Jin;Choi, Jeong Su;Lee, Jong-Woo;Lee, Min Woo;Cho, Jae Wook;Kim, Suhng Wook
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.3
    • /
    • pp.300-307
    • /
    • 2017
  • Electroencephalography (EEG) is distinct from other medical imaging tests in that it is a functional test that helps to diagnosis disorders related to the brain, such as epilepsy. The most important abilities for a medical technologist when performing an EEG are knowing the exact location of the electrode and recording the EEG wave clearly, except for artifacts. Although theoretical education and practical training are both included in the curriculum for improving these abilities, sufficient practical training has been lacking due to problems like expensive equipment and insufficient practical training time. We try to solve these issues by manufacturing the training 10-20 electrode system and by estimating the efficiency and satisfaction of the training 10-20 electrode system through a questionnaire. The time required for practical training using this system was $43.58{\pm}9.647min$, which proved to be efficient. The satisfaction score of participants who experienced curriculum practical training was improved from $7.21{\pm}2.285$ to $9.46{\pm}1.166$. Based on these findings, it is considered that practical training via the use of the training 10-20 electrode system will solve the problems, such as lack of equipment and insufficient practical training time. Nonetheless, to further improve the training 10-20 electrode system, it must overcome the limitations of developing a device capable of checking the actual brain waves and validating the exact location of electrode attachment.

Application of False Discovery Rate Control in the Assessment of Decrease of FDG Uptake in Early Alzheimer Dementia (조기 알츠하이머 치매의 뇌포도당 대사 감소 평가에서 오류발견률 조절법의 적용)

  • Lee, Dong-Soo;Kang, Hye-Jin;Jang, Myung-Jin;Cho, Sang-Soo;Kang, Won-Jun;Lee, Jae-Sung;Kang, Eun-Joo;Lee, Kang-Uk;Woo, Jong-In;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.6
    • /
    • pp.374-381
    • /
    • 2003
  • Purpose: Determining an appropriate thresholding is crucial for PDG PET analysis since strong control of Type I error could fail to find pathological differences between eariy Alzheimer' disease (AD) patients and healthy normal controls. We compared the SPM results on FDG PET imaging of early AD using uncorrected p-value, random-field based corrected p-value and false discovery rate (FDR) control. Materials and Methods: Twenty-eight patients ($66{\pm}7$ years old) with early AD and 18 age-matched normal controls ($68{\pm}6$ years old) underwent FDG brain PET. To identify brain regions with hypo-metabolism in group or individual patient compared to normal controls, group images or each patient's image was compared with normal controls usingthe same fixed p-value of 0.001 on uncorrected thresholding, random-field based corrected thresholding and FDR control. Results: The number of hypo-metabolic voxels was smallest in corrected p-value method, largest in uncorrected p-value method and intermediate in FDG thresholding in group analysis. Three types of result pattern were found. The first was that corrected p-value did not yield any voxel positive but FDR gave a few significantly hypometabolic voxels (8/28, 29%). The second was that both corrected p-value and FDR did not yield any positive region but numerous positive voxels were found with the threshold of uncorrected p-values (6/28, 21%). The last was that FDR was detected as many positive voxels as uncorrected p-value method (14/28, 50%). Conclusions FDR control could identify hypo-metaboiic areas in group or individual patients with early AD. We recommend FDR control instead of uncorrected or random-field corrected thresholding method to find the areas showing hypometabolism especially in small group or individual analysis of FDG PET.

Decreased White Matter Structural Connectivity in Psychotropic Drug-Naïve Adolescent Patients with First Onset Major Depressive Disorder (정신과적 투약력이 없는 초발 주요 우울장애 청소년 환아들에서의 백질 구조적 연결성 감소)

  • Suh, Eunsoo;Kim, Jihyun;Suh, Sangil;Park, Soyoung;Lee, Jeonho;Lee, Jongha;Kim, In-Seong;Lee, Moon-Soo
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.25 no.2
    • /
    • pp.153-165
    • /
    • 2017
  • Objectives : Recent neuroimaging studies focus on dysfunctions in connectivity between cognitive circuits and emotional circuits: anterior cingulate cortex that connects dorsolateral orbitofrontal cortex and prefrontal cortex to limbic system. Previous studies on pediatric depression using DTI have reported decreased neural connectivity in several brain regions, including the amygdala, anterior cingulate cortex, superior longitudinal fasciculus. We compared the neural connectivity of psychotropic drug naïve adolescent patients with a first onset of major depressive episode with healthy controls using DTI. Methods : Adolescent psychotropic drug naïve patients(n=26, 10 men, 16 women; age range, 13-18 years) who visited the Korea University Guro Hospital and were diagnosed with first onset major depressive disorder were registered. Healthy controls(n=27, 5 males, 22 females; age range, 12-17 years) were recruited. Psychiatric interviews, complete psychometrics including IQ and HAM-D, MRI including diffusion weighted image acquisition were conducted prior to antidepressant administration to the patients. Fractional anisotropy(FA), radial, mean, and axial diffusivity were estimated using DTI. FMRIB Software Library-Tract Based Spatial Statistics was used for statistical analysis. Results : We did not observe any significant difference in whole brain analysis. However, ROI analysis on right superior longitudinal fasciculus resulted in 3 clusters with significant decrease of FA in patients group. Conclusions : The patients with adolescent major depressive disorder showed statistically significant FA decrease in the DTI-based structure compared with healthy control. Therefore we suppose DTI can be used as a bio-marker in psychotropic drug-naïve adolescent patients with first onset major depressive disorder.

Measurement and Assessment of Absolute Quantification from in Vitro Canine Brain Metabolites Using 500 MHz Proton Nuclear Magnetic Resonance Spectroscopy: Preliminary Results (개의 뇌 조직로부터 추출한 대사물질의 절대농도 측정 및 평가: 500 MHz 고자장 핵자기공명분광법을 이용한 예비연구결과)

  • Woo, Dong-Cheol;Bang, Eun-Jung;Choi, Chi-Bong;Lee, Sung-Ho;Kim, Sang-Soo;Rhim, Hyang-Shuk;Kim, Hwi-Yool;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.100-106
    • /
    • 2008
  • The purpose of this study was to confirm the exactitude of in vitro nuclear magnetic resonance spectroscopy(NMRS) and to complement the defect of in vivo NMRS. It has been difficult to understand the metabolism of a cerebellum using in vivo NMRS owing to the generated inhomogeneity of magnetic fields (B0 and B1 field) by the complexity of the cerebellum structure. Thus, this study tried to more exactly analyze the metabolism of a canine cerebellum using the cell extraction and high resolution NMRS. In order to conduct the absolute metabolic quantification in a canine cerebellum, the spectrum of our phantom included in various brain metabolites (i.e., NAA, Cr, Cho, Ins, Lac, GABA, Glu, Gln, Tau and Ala) was obtained. The canine cerebellum tissue was extracted using the methanol-chloroform water extraction (M/C extraction) and one group was filtered and the other group was not under extract processing. Finally, NMRS of a phantom solution and two extract solution (90% D2O) was progressed using a 500MHz (11.4 T) NMR machine. Filtering a solution of the tissue extract increased the signal to noise ratio (SNR). The metabolic concentrations of a canine cerebellum were more close to rat’s metabolic concentration than human’s metabolic concentration. The present study demonstrates the absolute quantification technique in vitro high resolution NMRS with tissue extraction as the method to accurately measure metabolite concentration.

  • PDF