• Title/Summary/Keyword: Brain cells

Search Result 1,666, Processing Time 0.034 seconds

Effects of the Methanol Extract of Bupleuri Radix on Primary Cultured Brain Cells, DRG and Hepatocytes (시호의 메탄올 추출물이 일차배양한 뇌, DRG 및 간세포에 미치는 영향)

  • Kim, Young-Choong;Park, Mi-Jung;Byun, Soon-Jung;Song, Jin-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.21 no.1
    • /
    • pp.92-99
    • /
    • 1990
  • Effects of the methanol extract of Bupleuri Radix on primary cultured chicken embryonic brain cells, dorsal root ganglia (DRG) and rat hepatocytes were studied. The methanol extract of Bupleuri Radix at the concentration ranging from $10{\;}{\mu}g/ml\;to\;100{\;}{\mu}g/ml$ significantly recovered the cytotoxicity of rat hepatocytes induced by the treatment of galactosamine; at the concentration of $100\;{\mu}g/ml$, values of GOT and GPT in the culture medium were reduced by the 60% and 75%, respectively of those in the absence of the methanol extract of Bupleuri Radix. The addition of the methanol extract of Bupleuri Radix. into chicken embryonic brain cells which were cultured with a deficient medium significantly increased the number of cells promoting the neurite outgrowth. However, the methanol extract of Bupleuri Radix showed no effect on the activities of PDHC and acetylcholinesterase in primary cultured brain cells.

  • PDF

Effects of Dammarane Glycosides of Panax ginseng on Cholinergic Neurons in Primary Cultured Chicken Embryonic Brain Cells (일차배양한 계배 뇌세포 내의 콜린성 신경에 대한 인삼 Dammarane계 Glycosides의 작용)

  • Kim, So-Ra;Park, Mi-Jung;Huh, Hoon;Lee, Heum-Sook;Kim, Young-Choong
    • YAKHAK HOEJI
    • /
    • v.38 no.4
    • /
    • pp.401-409
    • /
    • 1994
  • The cholinergic activity of dammarane glycosides of Panax ginseng was examined both morphologically and chemically on primary cultures of chicken embryonic brain cells. When primary cultured chicken embryonic cells were treated with $50\;{\mu}g/ml$ of total dammarane glycosides of Panax ginseng followed by the exposure to 10mM atropine for 48 hr, lactate dehydrogenase levels within the cells remained at 36% of untreated control values while atropine-treated controls fell to 0% lactate dehydrogenase. It was found that cholinergic activity was mainly exerted by the panaxadiol glycosides. The treatment of the cells with $50\;{\mu}g/ml$ of panaxadiol glycosides followed by the exposure to atropine, lactate dehydrogenase levels within the cells remained at 60% of untreated control values. Ginsenoside $Rb_1$, a component of panaxadiol glycosides, was found to exert the cholinergic activity keeping the lactate dehydrogenase levels within the cells at 70% of untreated control values. The cholinergic activity of ginsenoside $Rb_1$ seems to be exerted through acting on the $Ca^{2+}$ channel in cultured brain cells.

  • PDF

Nitric Oxide Production in Brain Microglial Cells by Taraxacum officinale (포공영(蒲公英)에 의한 뇌 소교세포에서 산화질소 (NO)의 생성)

  • Im, Mi-Yang;Moon, Seok-Jae
    • The Journal of Internal Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.73-82
    • /
    • 1999
  • Nitric oxide (NO) is now recognized as a mediator of several biological and immunological functions, but unlike classical neurotransmitters. NO simply diffuse of the postsynaptic cells and around affecting cells. Taraxacum officinale (Compositae) has been used for maintenance of vitality, and they still occupy an important place in the traditional Korean medicine. We have examined that the effect of Taraxacum officinale water extract on NO synthesis in microglial cells of murine's brain, using the Griess method. And this study was evident that Taraxacum officinale did not induce NO production without recombinant interferon gamma ($rIFN-{\gamma}$), whereas Taraxacum officinale (10-1000 g/ml) with $rIFN-{\gamma}$ effectively produced NO in microglial cells of brain. As result. NO production in microglial cells increased most significantly in dose of 100 g/ml of the Taraxacum officinale and the production of NO was dependent on the dose of Taraxacum officinale, NG-monomethyl-L-arginine, competitive inhibitor of NO synthase, reduced the NO production by Taraxacum officinale stimulation with $rIFN-{\gamma}$ in microglial cells of murine. The effect of Taraxacum officinale was mainly dependent on Taraxacum officinale-induced tumor necrosis factor- secretion. Conclusively, this study suggested that Taraxacum officinale stimulate NO production at microglial cells in brain, which may be an important factor for mediating immune and neuroendocrinologic regulation in nervous system.

  • PDF

Highly Efficient Gene Delivery into Transfection-Refractory Neuronal and Astroglial Cells Using a Retrovirus-Based Vector

  • Kim, Byung Oh;Pyo, Suhkneung
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.451-454
    • /
    • 2005
  • Introduction of foreign genes into brain cells, such as neurons and astrocytes, is a powerful approach to study the gene function and regulation in the neuroscience field. Calcium phosphate precipitates have been shown to cause cytotoxicity in some mammalian cells and brain cells, thus leading to low transfection efficiency. Here, we describe a retrovirus-mediated gene delivery method to transduce foreign genes into brain cells. In an attempt to achieve higher gene delivery efficiency in these cells, we made several changes to the original method, including (1) use of a new packaging cell line, Phoenix ampho cells, (2) transfection of pMX retroviral DNA, (3) inclusion of 25 mM chloroquine in the transduction, and (4) 3- 5 h incubation of retroviruses with target cells. The results showed that the modified protocol resulted in a range of 40- 60% gene delivery efficiency in neurons and astrocytes. Furthermore, these results suggest the potential of the retrovirus-mediated gene delivery protocol being modified and adapted for other transfection-refractory cell lines and primary cells.

Antistress effect of red ginseng in brain cells is mediated by TACE repression via PADI4

  • Kim, Eun-Hye;Kim, In-Hye;Ha, Jung-Ah;Choi, Kwang-Tae;Pyo, Suhkneung;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.315-323
    • /
    • 2013
  • Ginseng is known to have antistress effects. Previously, red ginseng (RG) was shown to repress stress-induced peptidyl arginine deiminase type IV (PADI4) via estrogen receptor ${\beta}$ ($ER{\beta}$) in the brain, thus inhibiting brain cell apoptosis. Moreover, tumor necrosis factor (TNF)-${\alpha}$ plays a critical role in immobilization (IMO) stress. However, the signaling pathway of RG-mediated repressesion of inflammation is not completely understood. In this study, we determined how RG modulated gene expression in stressed brain cells. Since secretion of TNF-${\alpha}$ is modulated via TNF-${\alpha}$ converting enzyme (TACE) and nuclear factor (NF)-${\kappa}B$, we examined the inflammatory pathway in stressed brain cells. Immunohistochemistry revealed that TACE was induced by IMO stress, but RG repressed TACE induction. Moreover, PADI4 siRNA repressed TACE expression compared to the mock transfected control suggesting that PADI4 was required for TACE expression. A reporter assay also revealed that $H_2O_2$ oxidative stress induced NF-${\kappa}B$ in neuroblastoma SK-N-SH cells, however, RG pretreatment repressed NF-${\kappa}B$ induction. These findings were supported by significant induction of nitric oxide and reactive oxygen species (ROS) by oxidative stress, which could be repressed by RG administration. Taken together, RG appeared to repress stress-induced PADI4 via TACE and NF-${\kappa}B$ in brain cells thus preventing production of ROS and subsequently protecting brain cells from apoptosis.

Architecture of Cerebral Neuroendocrine System in the Lawa of Cabbage Butterfly Pieris rapue (배추흰나비 5령유충의 뇌신경내분비계의 구조)

  • 이봉희;윤혜련심재원
    • The Korean Journal of Zoology
    • /
    • v.36 no.2
    • /
    • pp.285-292
    • /
    • 1993
  • This investigation has been carried out to clarify structural architecture of cerebral neuroendocrine systems in the fifth instar lanra of cabbage butterfly Pieris rapae. In order to examine the cerebral neurosecretorv cell systems the brain and retrocerebral neuroendocrine complex were histochemically stained with the paraldehvde fuchsin. The brain of the fifth instar laMa contains three kinds of neurosecretorv cells: medial, lateral and tritocerebral neurosecretorv cells. The axon bundles of medial and lateral neurosecretory cells form medial neurosecretory pathway(MNSP) and lateral neurosecretorv pathwav(LNSP) within the brain respectively. Especially, prior to exiting the brain, the axon bundles of medial neurosecretorH cells located in both left and right cefebral hemispheres decussate in cerebral medial region and project to contralateral retrocerebral neuroendocrine complexes. Outside the brain the axon bundles of medial and lateral neurosecretory cells form the nenri corporis cardiaca(NCC) I and II respectively. The NCC I and ll run together to the retrocerebral neuroendocrine complex, forming the large nenre bundles in both left md right sides. The anon bundles of tritocerebral neurosecretory cells which pass through the brain along the tritocerebral neurosecretory pathway (TNSP) form the Ncc III outids the train. some of the Ncc I and it terminate in the corpus cardiacum, while the others pass through the corpus cardiacum without termination. The nerve bundle which passes the corpus cardiacum forms the nenrus corforis allatum(NCA) I which runs between the corpus cardiacum and the corpus allatum. Theyt are finally innervated to the corpus allatum. The Ncc III Projects to the corpus cardiRcum. However, most of NCC III priss through the corpus cardiacum without branching and then run down for another organ.

  • PDF

Involvement of Caspases and Bcl-2 Family in Nitric Oxide-Induced Apoptosis of Rat PC12 Cells

  • Jeong, Yeon-Jin;Jung, Ji-Yeon;Lee, Jin-Ha;Cho, Jin-Hyoung;Lee, Guem-Sug;Kim, Sun-Hun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2006
  • This study was aimed to investigate the nitric oxide (NO)-induced cytotoxic mechanism in PC12 cells. Sodium nitroprusside (SNP), an NO donor, decreased the viability of PC12 cells in dose-and time-dependent manners. SNP enhanced the production of reactive oxygen species (ROS), and gave rise to apoptotic morphological changes including cell shrinkage, chromatin condensation, and DNA fragmentation. Expression of Bax was not affected, whereas Bcl-2 was downregulated in SNP-treated PC12 cells. SNP augmented the release of cytochrome c from mitochondria into cytosol and enhanced caspase -8, -9, and -3 activities. SNP upregulated both Fas and Fas-L, which are known to be components of death receptor assembly. These results suggest that NO induces apoptosis of PC12 cells through both mitochondria-and death receptor-mediated pathways mediated by ROS and Bcl-2 family.

Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

  • Hu, Min;Liu, Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.325-332
    • /
    • 2016
  • Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS ($1{\mu}g/ml$) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs.

Region- and Neuronal Phenotype-specific Expression of NELL2 in the Adult Rat Brain

  • Jeong, Jin Kwon;Kim, Han Rae;Hwang, Seong Mun;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.186-192
    • /
    • 2008
  • NELL2, a neural tissue-enriched protein, is produced in the embryo, and postembryonically in the mammalian brain, with a broad distribution. Although its synthesis is required for neuronal differentiation in chicks, not much is known about its function in the adult mammalian brain. We investigated the distribution of NELL2 in various regions of the adult rat brain to study its potential functions in brain physiology. Consistent with previous reports, NELL2-immunoreactivity (ir) was found in the cytoplasm of neurons, but not in glial fibrillary acidic protein (GFAP)-positive glial cells. The highest levels of NELL2 were detected in the hippocampus and the cerebellum. Interestingly, in the cerebellar cortex NELL2 was observed only in the GABAergic Purkinje cells not in the excitatory granular cells. In contrast, it was found mainly in the hippocampal dentate gyrus and pyramidal cell layer that contains mainly glutamatergic neurons. In the dentate gyrus, NELL2 was not detected in the GFAP-positive neural precursor cells, but was generally present in mature neurons of the subgranular zone, suggesting a role in this region restricted to mature neurons.

The Changes of P-glycoprotein Activity by Interferon-γ and Tumor Necrosis Factor-α in Primary and Immortalized Human Brain Microvascular Endothelial Cells

  • Lee, Na-Young;Rieckmann, Peter;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.293-298
    • /
    • 2012
  • The purpose of this study was to investigate the modification of expression and functionality of the drug transporter P-glycoprotein (P-gp) by tumor necrosis factor-alpha (TNF-${\alpha}$) and interferon-gamma (IFN-${\gamma}$) at the blood-brain barrier (BBB). We used immortalized human brain microvessel endothelial cells (iHBMEC) and primary human brain microvessel endothelial cells (pHBMEC) as in vitro BBB model. To investigate the change of p-gp expression, we carried out real time PCR analysis and Western blotting. To test the change of p-gp activity, we performed rhodamin123 (Rh123) accumulation study in the cells. In results of real time PCR analysis, the P-gp mRNA expression was increased by TNF-${\alpha}$ or IFN-${\gamma}$ treatment for 24 hr in both cell types. However, 48 hr treatment of TNF-${\alpha}$ or IFN-${\gamma}$ did not affect P-gp mRNA expression. In addition, co-treatment of TNF-${\alpha}$ and IFN-${\gamma}$ markedly increased the P-gp mRNA expression in both cells. TNF-${\alpha}$ or IFN-${\gamma}$ did not influence P-gp protein expression whatever the concentration of cytokines or duration of treatment in both cells. However, P-gp expression was increased after treatments of both cytokines together in iHBMEC cells only compared with untreated control. Furthermore, in both cell lines, TNF-${\alpha}$ or IFN-${\gamma}$ induced significant decrease of P-gp activity for 24 hr treatment. And, both cytokines combination treatment also decreased significantly P-gp activity. These results suggest that P-gp expression and function at the BBB is modulated by TNF-${\alpha}$ or/and IFN-${\gamma}$. Therefore, the distribution of P-gp depending drugs in the central nervous system can be modulated by neurological inflammatory diseases.