• Title/Summary/Keyword: Brain based learning

Search Result 198, Processing Time 0.024 seconds

The Analysis of Researches on the Brain-based Teaching and Learning for Elementary Science Education (초등과학교육에의 적용을 위한 뇌-기반 학습 연구의 교육적 의미 분석)

  • Choi, Hye Young;Shin, Dong-Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.1
    • /
    • pp.140-161
    • /
    • 2014
  • The purpose of this study was to analyze 181 papers about brain-based learning appeared in domestic scientific journals from 1989 to May of 2012 and suggest application conditions in elementary science education. The results of this study summarizes as follows; First, learning activity suggested by brain-based learning study is mainly explained by working of brain function. Learning activity explained by brain-based learning study are divided into 'learning according to specialized brain function, learning according to brain function integration and learning beyond specialization and integration of hemispheres'. Second, it searched how increased knowledge of brain structure and function affects learning. Analysis from this point of view suggests that brain-based learning study affects learning in many ways especially emotion, creativity and learning motivation. Third, brain-based learning study suggests various possibilities of learning activity reflecting brain plasticity. Plasticity which is one of most important characteristics of brain supports the validity of learning activity as learning disorder treatment and explains the possibility of selective increment of brain function by leaning activity and the need of whole-brain approach to learning activity. Fourth, brain-based learning brought paradigm shifts in education field. It supports learning sophistication on the understanding of student's learning activity, guides learning method that reflects the characteristics of subject and demands reconstruction of curriculum. Fifth, there are many conditions to apply brain-based learning in elementary science education field, learning environment that fits brain-based learning, change of perspectives on teaching and learning of science educators and development of brain-based learning curriculum are needed.

Analysis of Teaching-Learning Programs from the Perspective of Brain-Based Learning Science -Focused on 5th Grade Elementary Science- (뇌-기반 학습 과학적 관점을 적용한 교수.학습 프로그램 분석 -초등학교 5학년 과학을 중심으로-)

  • Lee, Na-Yeon;Shin, Dong-Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.4
    • /
    • pp.562-573
    • /
    • 2011
  • The purpose of this study was to examine the effects of teaching-learning programs from the perspective of brain-based learning science. Four units in 5th grade elementary science programs of the Revised 2007 National Curriculum were selected as contents to study. As the brain-based learning science analysis method, equations of the brain compatibleness index (BCI) and contribution degree on the brain compatibleness index (BCICRE) were applied to them. This study showed that there were qualitative and quantitative differences among the analyzed teaching-learning programs through the unit and curriculum. The results showed that hands-on activities like experiments or open inquiry activities improved their evaluation of the teaching-learning programs. From the analyzing, teachers can judge whether each teaching-learning program made considered the brain of the learners. Furthermore, this study can provide useful information to consult of various science teaching-learning programs brain-based learning.

The Effects of Brain Education Based on Learning Camp Program for Children's self-directed learning ability and attitude (뇌교육 기반 학습캠프 프로그램이 아동의 자기주도적 학습 능력 및 태도에 미치는 영향)

  • Shin, Jae-Han;Kim, Hye-Seon;Kim, Jin-A
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.477-485
    • /
    • 2018
  • The aim of this study was to improve the 'self-directed learning ability and attitudeselementary school students by applying a brain education-based learning program based on brain science in the form of a short term camp in consideration of the elementary school students' brain characteristics and mechanisms. For this purpose, this study was conducted on 4, 5, and 6 elementary school students in Korea. The brain training based learning camp program was conducted for two nights and three days. The camps were conducted twice from February 3 to 5, 2017 with 45 students from grade 6 and from February 22 to July 24, 2017, with 56 students from grades 4 and 5, 101 students in total. The conclusions of this study are as follows. The brain education-based learning camp program was found to be effective in improving the elementary school students' self-directed learning ability and learning attitude. First, the brain education-based learning camp program can increase the learning concentration through brain gymnastics, breathing, and meditation. Second, brain training called 'Brain Screen' among the brain education-based learning camp program can improve the brain ability of memory. Third, it can establish a self - directed learning philosophy of 'My study is done by me' by giving reason and motivation to study through the brain education-based learning camp program.

Brain-based Learning Science: What can the Brain Science Tell us about Education? (뇌기반 학습과학: 뇌과학이 교육에 대해 말해 주는 것은 무엇인가?)

  • Kim, Sung-Il
    • Korean Journal of Cognitive Science
    • /
    • v.17 no.4
    • /
    • pp.375-398
    • /
    • 2006
  • Humans learn by observing, hearing, imitating, doing, and feeling. The brain(cortex) is the central tore of this process. The recent rapid progress of brain science and the active interdisciplinary collaboration between brain science and cognitive science opens a new possibility. That is a new research Held called 'Brain-Based learning Science', 'Edutational Neuroscienre', or 'NeuroEduration' This study reviews the nature and basic assumptions of brain-based learning science, current directions in educational neuroscience research, the neuro-myths, educational implications of neuroscience, and a possibility of making a meaningful connection between brain science and education. Also the future prospects and limitations of the brain-based learning science are discussed.

  • PDF

An Integrational Approach for Culinary Education based on Brain-based Teaching Principle (뇌학습 원리에 기초한 조리교육을 위한 통합적 고찰)

  • Lee, Jeong-Ae
    • Culinary science and hospitality research
    • /
    • v.24 no.3
    • /
    • pp.144-155
    • /
    • 2018
  • This study was conducted to explore the direction of culinary education based brain-based education with analysis of comprehensive research. Questionnaire was completed by frequency analysis, factor analysis, reliability analysis and regression analysis by using SPSS 21. The purpose of this study was to investigate the educational system for creative development through cooking sources and to develop brain-based learning theory, and thus to generate the characteristics and effects of the practice in culinary educational context. The basic principles of brain- based learning are brain plasticity, emotional brain, and ecological brain. Students need to be able to enrich their understanding of social interaction so that social brain's function will be activated through consistent and high-quality feedback. Likewise, students should be capable of collecting everything what they have learned. Defining main ideas and goal of the lesson, four factors were derived from development of competency, personality, application, and diversity. Regarding to the result of this study, the implications for the development of a brain-base program were suggested.

A Review of Domestic Research for the Brain-science Based Learning According to Age and Comparison and Consideration of Learning Methodology of Korean Medicine According to Age (뇌과학에 기반한 연령별 학습법과 연령별 한의학적 학습방법론 비교고찰)

  • Cho, A-Ram;Park, So-Im;Kang, Da-Hyun;Sue, Joo-Hee
    • Journal of Oriental Neuropsychiatry
    • /
    • v.25 no.4
    • /
    • pp.333-350
    • /
    • 2014
  • Objectives: The purpose of this study was to research learning based on brain science and the learning methodology of Korean Medicine according to disparity of age. Through this, the study aimed to provide a guideline to related Korean Medicine treatments as well as the common nurturing/educational institutions. Methods: All journals and dissertations on brain science based learning methods studied in Korea to date that could be found in the National Assembly Library and the RISS were implemented in the analysis. The terminology used for search was as follows: 1st search, 'Brain'; 2nd search, 'Learning', 'Education'; 3rd search, 'Baby, 'Infant', 'Child'. For the learning methodology of Korean Medicine according to disparity of age, the related contents were extracted from Donguibogam and Liuyi, Sasang constitutional medicine. Results: A total of 30 studies, were collected as data. In the baby stage, the development and myelination of brain neurons are accelerated by experience and learning, highly influenced by social, cognitive and emotional movement. In infancy, the frontal lobe actively develops, so education for development of the prefrontal cortex is suggested. The brain of the infant at this stage can be developed by arts and physical education. In the child stage, the parietal and temporal lobe develop actively. Thus, programs to stimulate brain activity including brain respiration would be helpful in enhancing learning ability, concentration, etc. As evidence for learning and nurturing methodology according to disparity of age from Korean Medicine prospective, the following are listed: Location and time for sexual intercourse before pregnancy, stabilization during pregnancy, baby nurturing methods for nurturing from Donguibogam. Also Liuyi and Sasanag constitutional medicine can be the learning methodology according to disparity of age. And there are acupuncture points on each head section according to age in Donguibogam. Conclusions: Studies on 'brain-science based learning' are continuously being conducted. Based on these studies, diverse new brain-science based learning will be developed in the future. There is also a need to develop the learning methodology of Korean Medicine according to disparity of age in a more systematic and diverse way.

Brain laterality and whole brain EEG on the learning senses (학습감각에 대한 뇌의 분화성과 통합성 뇌파연구)

  • Kwon, Hyungkyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.55-64
    • /
    • 2015
  • The present study identified the brain based learning activities on the individual learning senses by using the brain laterality and the whole brain index. Students receive the information through the visual, auditory, and kinesthetic senses by Politano and Paquin's (2000) classification. These learning senses are reflected on brain by the various combinations of senses for learning. Measuring the types of the learning senses involving in brain laterality and whole brain is required to figure out the related learning styles. Self-directed learning involved in the learning senses shows the problem-based learning associated to the brain function by emphasizing the balanced brain utilization which is known as whole brain. These research results showed the successful whole brain learning is closely associated with elevated auditory learning and elevated visual learning in sensorimotor brainwave rhythm (SMR) while it shows the close association with elevated kinesthetic and elevated visual learning in beta brainwave rhythm.

The Effects of a Brain-Based Science Teaching and Learning Model on ${\ulcorner}$Intelligent Life${\lrcorner}$ Course of Elementary School (뇌 기반 과학 교수 학습 모형을 적용한 "슬기로운 생활" 수업의 효과)

  • Lim, Chae-Seong;Ha, Ji-Yeon;Kim, Jae-Young;Kim, Nam-Il
    • Journal of Korean Elementary Science Education
    • /
    • v.27 no.1
    • /
    • pp.60-74
    • /
    • 2008
  • The purpose of this study was to examine the effects of a brain-based science teaching and learning model on the science related attitudes, scientific inquiry skills and science knowledge of the 2nd graders in Intelligent Life course. For this study, 117 elementary students from four classes of the 2nd grade in Seoul were selected. In the comparison group, traditional instruction was implemented and in the experimental group, instruction according to brain-based science teaching and learning model was implemented for four weeks. The results of this study were as follows : There were little differences between the comparison and experimental groups in terms of the science related attitudes except for the sub-domains of interest and curiosity. And brain-based science teaching and learning model programs improved a few scientific inquiry skills, especially observation and classification. In addition, the experimental groups showed a positive effect on science knowledge. In conclusion, brain-based science teaching and learning model programs were more effective in improvement of the science related attitudes, scientific inquiry skills and science knowledge of elementary students.

  • PDF

Brain-based Teaching Strategies for Nurse Educators: An Integrative Review (간호교육에서 뇌기반학습의 교수전략을 위한 통합적 고찰)

  • Oh, Jina;Kim, Shin-Keong;Kang, Kyung-Ah;Kim, Sung-Hee;Roh, Heyrin;Gagne, Jennie C. De
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.20 no.4
    • /
    • pp.617-627
    • /
    • 2014
  • Purpose: Brain-based learning has become increasingly important in nursing education. The purpose of this study is to (a) synthesize the literature on brain-based learning in nursing education using Whittemore and Knafl's integrative review method, and (b) discuss teaching strategies for nursing educators. Method: Searches were made through the CINAHL, OVID, PubMED, and SCOPUS databases using the terms $nurs^*$ AND (brain based OR neuroscience) AND ($educa^*$ OR $learn^*$ OR $teach^*$). Included were original articles in the domain of undergraduate nursing education written in English in peer-reviewed journals between January 1984 and December 2013. Twenty-four papers met the criteria. Results: Three themes were retrieved: (a) activate whole-brain functions, (b) establish supportive educational environments, and (c) encourage learners to be more active. Conclusion: Brain-based learning enhances the learning capabilities of undergraduate nursing students.

Analyses of Elementary School Students' Interests and Achievements in Science Outdoor Learning by a Brain-Based Evolutionary Approach (뇌기반 진화적 접근법에 따른 과학 야외학습이 초등학생들의 흥미와 성취도에 미치는 영향)

  • Park, Hyoung-Min;Kim, Jae-Young;Lim, Chae-Seong
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.2
    • /
    • pp.252-263
    • /
    • 2015
  • This study analyzed the effects of science outdoor activity applying a Brain-Based Evolutionary (ABC-DEF) approach on elementary school students' interest and academic achievement. Samples of the study were composed of 3 classes of 67 sixth graders in Seoul, Korea. Unit of 'Ecosystem and Environment' was selected as a object of the research. Textbook- and teachers' guidebook-based instruction was implemented in comparison group, brain-based evolutionary approach within classroom in experimental group A, and science outdoor learning by a brain-based evolutionary approach in experimental group B. In order to analyze the quantitative differences of students' interests and achievements, three tests of 'General Science Attitudes', 'Applied Unit-Related Interests', and 'Applied Unit-Related Achievement' were administered to the students. To find out the characteristics which would not be apparently revealed by quantitative tests, qualitative data such as portfolios, daily records of classroom work, and interview were also analyzed. The major results of the study are as follows. First, for post-test of interest, a statistically significant difference between comparison group and experimental group B was found. Especially, the 'interests about biology learning' factor, when analyzed by each item, was significant in two questions. Results of interviews the students showed that whether the presence or absence of outdoor learning experience influenced most on their interests about the topic. Second, for post-test of achievement, the difference among 3 groups according to high, middle, and low levels of post-interest was not statistically significant, but the groups of higher scores in post-interest tends to have higher scores in post-achievement. It can be inferred that outdoor learning by a brain-based evolutionary approach increases students' situational interests about leaning topic. On the basis of the results, the implications for the research in science education and the teaching and learning in school are discussed.