• Title/Summary/Keyword: Brain Tumors

Search Result 379, Processing Time 0.023 seconds

Thallium-201 Uptake and Washout in T1-201 Brain SPECT of Various Brain Tumors (각종 뇌 종양의 Thallium-201 뇌 SPECT에서 Thallium-201의 동태)

  • Lim, Sang-Moo;Hong, Sung-Woon;Rhee, Chang-Hun;Lee, Seung-Hoon;Kim, Jong-Hyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.2
    • /
    • pp.360-364
    • /
    • 1992
  • Treatment for the brain tumors consist of surgery, chemotherapy, and a variety of methods of irradiation. Therapy is aimed to destroy the tumor, but necrosis and edema occur concurrently. Conventional structural imaging techniques such as CT or MRI are unable to reliably distinguish persistent and recurrent tumor from necrosis or edema. T1-201 has been shown to be useful in the evaluation of the myocardial viability by comparing the early uptake and redistribution image. The aim of this study is to evaluate the clinical usefulness of the early uptake and delayed washout images of the T1-201 brain SPECT in the brain tumors. In the pathologically diagnosed various brain tumor patients, brain SPECT was done with rotating gamma camera 15 minutes and 3 hours after T1-201 injection, and the T1-201 uptake in the tumor was compared with the skull and scalp activity. In the glioblastoma multiforme, meningioma and metastatic tumor, the T1-201 uptake was higher than low grade glioma in both 15 minute and 3 hour images (p<0.02). In the low grade glioma,3 hour T1-201 uptake was significantly lower than 15 minute uptake (p<0.05) but in the glioblastoma, meningioma and metastatic tumor there was no significant difference. There was no significant difference in the T1-201 uptake among the glioblastoma, meningioma and metastatic tumors. In one matastatic tumor, T1-201 uptake was decreased after radiation therapy. T1-201 brain SPECT could distinguish the benign and malignancy, and seems to be useful in the follow-up after treatment. But one of the early or delayed SPECT seems not to be necessary for these purposes.

  • PDF

Descriptive Epidemiology of Primary Brain and CNS Tumors in Delhi, 2003-2007

  • Manoharan, N.;Julka, P.K.;Rath, G.K.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.637-640
    • /
    • 2012
  • The Delhi Population Based Cancer Registry data during the period 2003-2007 were used to describe the epidemiology of primary malignant brain and central nervous system tumors in Delhi. A total of 1989 brain and CNS tumors cases in 1291 males and 698 females were registered during the period 1st January 2003 to 31st December 2007. The age adjusted (world population) incidence rates were 3.9 per 100,000 for males and 2.4 per 100,000 for females. Gliomas were the most frequently reported histology both in males (26.6%) and females (23.2%). A male predominance in incidence was observed for all histological classifications. The rates in Delhi are low compared to the incidences reported from developed countries.

Malignant Brain Tumours in Children : Present and Future Perspectives

  • Rutka, James T.
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.402-406
    • /
    • 2018
  • In contrast to many of the malignant tumors that occur in the central nervous system in adults, the management, responses to therapy, and future perspectives of children with malignant lesions of the brain hold considerable promise. Within the past 5 years, remarkable progress has been made with our understanding of the basic biology of the molecular genetics of several pediatric malignant brain tumors including medulloblastoma, ependymoma, atypical teratoid rhabdoid tumour, and high grade glioma/diffuse intrinsic pontine glioma. The recent literature in pediatric neuro-oncology was reviewed, and a summary of the major findings are presented. Meaningful sub-classifications of these tumors have arisen, placing children into discrete categories of disease with requirements for targeted therapy. While the mainstay of therapy these past 30 years has been a combination of central nervous system irradiation and conventional chemotherapy, now with the advent of high resolution genetic mapping, targeted therapies have emerged, and less emphasis is being placed on craniospinal irradiation. In this article, the present and future perspective of pediatric brain malignancy are reviewed in detail. The progress that has been made offers significant hope for the future for patients with these tumours.

The Tumor Control According to Radiation Dose of Gamma Knife Radiosurgery for Small and Medium-Sized Brain Metastases from Non-Small Cell Lung Cancer

  • Park, Sue Jee;Lim, Sa-Hoe;Kim, Young-Jin;Moon, Kyung-Sub;Kim, In-Young;Jung, Shin;Kim, Seul-Kee;Oh, In-Jae;Hong, Jong-Hwan;Jung, Tae-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.983-994
    • /
    • 2021
  • Objective : The effectiveness of gamma knife radiosurgery (GKR) in the treatment of brain metastases is well established. The aim of this study was to evaluate the efficacy and safety of maximizing the radiation dose in GKR and the factors influencing tumor control in cases of small and medium-sized brain metastases from non-small cell lung cancer (NSCLC). Methods : We analyzed 230 metastatic brain tumors less than 5 mL in volume in 146 patients with NSCLC who underwent GKR. The patients had no previous radiation therapy for brain metastases. The pathologies of the tumors were adenocarcinoma (n=207), squamous cell carcinoma (n=18), and others (n=5). The radiation doses were classified as 18, 20, 22, and 24 Gy, and based on the tumor volume, the tumors were categorized as follows : small-sized (less than 1 mL) and medium-sized (1-3 and 3-5 mL). The progression-free survival (PFS) of the individual 230 tumors and 146 brain metastases was evaluated after GKR depending on the pathology, Eastern Cooperative Oncology Group (ECOG) performance score (PS), tumor volume, radiation dose, and anti-cancer regimens. The radiotoxicity after GKR was also evaluated. Results : After GKR, the restricted mean PFS of individual 230 tumors at 24 months was 15.6 months (14.0-17.1). In small-sized tumors, as the dose of radiation increased, the tumor control rates tended to increase (p=0.072). In medium-sized tumors, there was no statistically difference in PFS with an increase of radiation dose (p=0.783). On univariate analyses, a statistically significant increase in PFS was associated with adenocarcinomas (p=0.001), tumors with ECOG PS 0 (p=0.005), small-sized tumors (p=0.003), radiation dose of 24 Gy (p=0.014), synchronous lesions (p=0.002), and targeted therapy (p=0.004). On multivariate analyses, an improved PFS was seen with targeted therapy (hazard ratio, 0.356; 95% confidence interval, 0.150-0.842; p=0.019). After GKR, the restricted mean PFS of brain at 24 months was 9.8 months (8.5-11.1) in 146 patients, and the pattern of recurrence was mostly distant within the brain (66.4%). The small and medium-sized tumors treated with GKR showed radiotoxicitiy in five out of 230 tumors (2.2%), which were controlled with medical treatment. Conclusion : The small-sized tumors were effectively controlled without symptomatic radiation necrosis as the radiation dose was increased up to 24 Gy. The medium-sized tumors showed potential for symptomatic radiation necrosis without signifcant tumor control rate, when greater than 18 Gy. GKR combined targeted therapy improved the tumor control of GKR-treated tumors.

Brain Tumor Detection Based on Amended Convolution Neural Network Using MRI Images

  • Mohanasundari M;Chandrasekaran V;Anitha S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2788-2808
    • /
    • 2023
  • Brain tumors are one of the most threatening malignancies for humans. Misdiagnosis of brain tumors can result in false medical intervention, which ultimately reduces a patient's chance of survival. Manual identification and segmentation of brain tumors from Magnetic Resonance Imaging (MRI) scans can be difficult and error-prone because of the great range of tumor tissues that exist in various individuals and the similarity of normal tissues. To overcome this limitation, the Amended Convolutional Neural Network (ACNN) model has been introduced, a unique combination of three techniques that have not been previously explored for brain tumor detection. The three techniques integrated into the ACNN model are image tissue preprocessing using the Kalman Bucy Smoothing Filter to remove noisy pixels from the input, image tissue segmentation using the Isotonic Regressive Image Tissue Segmentation Process, and feature extraction using the Marr Wavelet Transformation. The extracted features are compared with the testing features using a sigmoid activation function in the output layer. The experimental findings show that the suggested model outperforms existing techniques concerning accuracy, precision, sensitivity, dice score, Jaccard index, specificity, Positive Predictive Value, Hausdorff distance, recall, and F1 score. The proposed ACNN model achieved a maximum accuracy of 98.8%, which is higher than other existing models, according to the experimental results.

Cryptococcal Brainstem Abscess Mimicking Brain Tumors in an Immunocompetent Patient

  • Hur, Jong Hee;Kim, Jang-Hee;Park, Seoung Woo;Cho, Kyung Gi
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.1
    • /
    • pp.50-53
    • /
    • 2015
  • Usually fungal infections caused by opportunistic and pathogenic fungi had been an important cause of morbidity and mortality among immunocompromised patients. However clinical data and investigations for immunocompetent pathogenic fungal infections had been rare and neglected into clinical studies. Especially Cryptococcal brainstem abscess cases mimicking brain tumors were also much more rare. So we report this unusual case. This 47-year-old man presented with a history of progressively worsening headache and nausea for 1 month and several days of vomituritions before admission. Neurological and laboratory examinations performed demonstrated no abnormal findings. Previously he was healthy and did not have any significant medical illnesses. A CT and MRI scan revealed enhancing $1.8{\times}1.7{\times}2.0$ cm mass lesion in the left pons having central necrosis and peripheral edema compressing the fourth ventricle. And also positron emission tomogram scan demonstrated a hot uptake of fluoro-deoxy-glucose on the brainstem lesion without any evidences of systemic metastasis. Gross total mass resection was achieved with lateral suboccipital approach with neuronavigation system. Postoperatively he recovered without any neurological deficits. Pathologic report confirmed Cryptococcus neoformans and he was successively treated with antifungal medications. This is a previously unreported rare case of brainstem Cryptococcal abscess mimicking brain tumors in immunocompetent host without having any apparent typical meningeal symptoms and signs with resultant good neurosurgical recovery.

Expression of Vascular Endothelial Growth Factor in Astrocytic Tumors - Correlation to Peritumoral Brain Edema and Microvasculature - (성상세포종양에서 혈관내피증식인자의 발현 - 종양주변부 부종 및 미세혈관과의 상관관계 -)

  • Kim, Tae Young;Park, Jong Tae;Moon, Seong Keun;Han, Weon Cheol
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.10
    • /
    • pp.1303-1308
    • /
    • 2000
  • Objectives : It has been known that vascular endothelial growth factor(VEGF), as an endothelial cell-specific mitogen, induces angiogenesis, and possesses vascular permeability and procoagulant properties. Peritumoral brain edema(PTBE) is a common accompaniment of malignant gliomas. It results from microvascular extravasation of plasma and proteins through the interendothelial spaces. The correlation between pathological grading, PTBE, neovascularization, and the expression of VEGF were analyzed in 31 patients with astrocytic tumors. Methods : Astrocytic tumor samples(8 astrocytomas, 14 anaplastic astrocytomas, and 9 glioblastomas) from 31 patients( 21 males and 10 females : average age $37{\pm}24$ years) who underwent surgery were examined retrospectively for the expression of VEGF and CD31(microvasculature) immunohistochemically. The extent of PTBE was examined by using preoperative CT or MRI as an edema index(EI). In addition to VEGF and CD31, several causative factors including tumor size, histologic type were compared with EI. Results : Only one of 8 astrocytomas, and majority of high grade(21 of 23 anaplastic astrocytomas and glioblastomas) tumors demonstrated PTBE(p<0.05). The majority of high grade tumors showed higher expression of VEGF (p<0.01). High grade tumors showed even higher CD31 expression(p<0.05), however, there was no close correlation between expression of VEGF and CD31. The EI was increased significantly, just as VEGF(p<0.01), but CD31 expression was not correlated with high EI. Conclusion : These data suggest that VEGF expression is closely correlated with PTBE and histological grading in astrocytic tumors. Microvasculature(CD31) in tumors is highly correlated with histological grading, however, shows no correlation with the expression of VEGF and PTBE.

  • PDF

Comparison of Pre-processed Brain Tumor MR Images Using Deep Learning Detection Algorithms

  • Kwon, Hee Jae;Lee, Gi Pyo;Kim, Young Jae;Kim, Kwang Gi
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.79-84
    • /
    • 2021
  • Detecting brain tumors of different sizes is a challenging task. This study aimed to identify brain tumors using detection algorithms. Most studies in this area use segmentation; however, we utilized detection owing to its advantages. Data were obtained from 64 patients and 11,200 MR images. The deep learning model used was RetinaNet, which is based on ResNet152. The model learned three different types of pre-processing images: normal, general histogram equalization, and contrast-limited adaptive histogram equalization (CLAHE). The three types of images were compared to determine the pre-processing technique that exhibits the best performance in the deep learning algorithms. During pre-processing, we converted the MR images from DICOM to JPG format. Additionally, we regulated the window level and width. The model compared the pre-processed images to determine which images showed adequate performance; CLAHE showed the best performance, with a sensitivity of 81.79%. The RetinaNet model for detecting brain tumors through deep learning algorithms demonstrated satisfactory performance in finding lesions. In future, we plan to develop a new model for improving the detection performance using well-processed data. This study lays the groundwork for future detection technologies that can help doctors find lesions more easily in clinical tasks.

Gamma Knife Radiosurgery for Juxtasellar Tumors (터어키안 주변종양에 대한 감마나이프 방사선 수술)

  • Chang, Jong Hee;Chang, Jin Woo;Park, Yong Gou;Chung, Sang Sup
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.10
    • /
    • pp.1345-1351
    • /
    • 2000
  • Objective : Around the sellar area, there are many important structures. But, the optimal radiation dosage for minimal toxicity to surrounding neural tissue has not been firmly established. The purpose of this study is to evaluate the radiosurgical outcome of juxtasellar tumors and to investigate the relationship between radiation dosage and toxicity to neural tissue. Method : Between May 1992 and June 2000, we treated 65 juxtasellar tumors by using the Leksell Gamma Knife. Among them, 52 patients who could be followed more than 1 year were included in this study. The radiosurgical dosage to the optic pathway, cavernous sinus, Meckel's cave, hypothalamus, pituitary gland and stalk, and brain stem was analyzed and correlated with clinical outcome. The mean follow-up period was 33.5 months(range 12.2- 99.0 months). Result : The clinical response rate was 69.2%. The volume response rate was 61.0% and the radiologic control rate was 92.7%. There were 4 complications(7.7%) of 2 trigeminal neuropathy, 1 abducens nerve palsy, and 1 trigeminal and transient abducens nerve palsy. The optic apparatus appeared to tolerate doses greater than 10Gy. The risk of cranial nerve complications in cavernous sinus seemed to be related to doses of more than 16Gy. In 3 of 4 patients who received more than 16Gy to cavernous sinus, the abducens or trigeminal neuropathy occurred. Also, one patient who received more than 15Gy to the Meckel's cave, trigeminal neuropathy developed. The hypothalamus, pituitary gland and stalk, and brain stem were relatively tolerable to radiation. Conclusion : Gamma Knife radiosurgery seems to be an effective method to control the growth of juxtasellar tumors. To avoid injury to surrounding important neural tissue, careful dose planning and further study for radiation toxicity to neural tissue were needed.

  • PDF

Expression of Chemokines and Chemokine Receptors in Brain Tumor Tissue Derived Cells

  • Razmkhah, Mahboobeh;Arabpour, Fahimeh;Taghipour, Mousa;Mehrafshan, Ali;Chenari, Nooshafarin;Ghaderi, Abbas
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7201-7205
    • /
    • 2014
  • Chemokine and chemokine receptor expression by tumor cells contributes to tumor growth and angiogenesis and thus these factors may be considered as tumor markers. Here we aimed to characterize cells directly extracted from glioma, meningioma, and secondary brain tumors as well as non-tumoral cells in vitro. Cells were isolated from brain tissues using 0.2% collagenase and characterized by flow cytometry. Expression of SDF-1, CXCR4, CXCR7, RANTES, CCR5, MCP-1 and IP-10 was defined using flow cytometry and qRT-PCR methods. Brain tissue isolated cells were observed as spindle-shaped cell populations. No significant differences were observed for expression of SDF-1, CXCR4, CXCR7, RANTES, CCR5, and IP-10 transcripts. However, the expression of CXCR4 was approximately 13-fold and 110-fold higher than its counterpart, CXCR7, in meningioma and glioma cells, respectively. CXCR7 was not detectable in secondary tumors but CXCR4 was expressed. In non tumoral cells, CXCR7 had 1.3-fold higher mRNA expression than CXCR4. Flow cytometry analyses of RANTES, MCP-1, IP-10, CCR5 and CXCR4 expression showed no significant difference between low and high grade gliomas. Differential expression of CXCR4 and CXCR7 in brain tumors derived cells compared to non-tumoral samples may have crucial impacts on therapeutic interventions targeting the SDF-1/CXCR4/CXCR7 axis.