• 제목/요약/키워드: Brain Technology

검색결과 1,267건 처리시간 0.03초

Tensile Characteristics and Behavior of Blood Vessels from Human Brain in Uniaxial Tensile Test

  • Suh, Chang-Min;Kim, Sung-Ho;Ken L. Monson;Werner Goldsmith
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.1016-1025
    • /
    • 2003
  • The rupture of blood vessels in the human brain results in serious pathological and medical problems. In particular, brain hemorrhage and hematomas resulting from impact to the head are a major cause of death. As such, investigating the tensile behavior and rupture of blood vessels in the brain is very important from a medical point of view. In the present study, the tensile characteristics of the blood vessels in the human brain were analyzed using a quasi-static uniaxial tensile test, and the properties of the arteries and veins compared. In addition, to compare the tensile behavior and demonstrate the validity of the experimental results, blood vessels from the legs of pigs were also tested and analyzed. The overall results were in accordance with the histological structures and previous medical reports.

Phototransduction and Visual Cycle in the Ascidian Tadpole Larva

  • Kusakabe, Takehiro;Nakashima, Yuki;Kusakabe, Rie;Horie, Takeo;Kawakami, Isao;Yoshida, Reiko;Inada, Kyoko;Nakagawa, Masashi;Tsuda, Motoyuki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.37-40
    • /
    • 2002
  • Ascidians are lower chordates, and their tadpole-like larvae share a basic body plan with vertebrates. To study photoreceptive systems in ascidians, we have isolated and characterized cDNA clones for three opsins, five G protein ${\alpha}$ subunits (G${\alpha}$), catalytic and regulatory subunits of cGMP phosphodiesterase (PDE), and arrestin from the ascidian Ciona intestinalis tadpole larva. Ci-opsin1 and Ci-opsin2 are vertebrate-type opsins, while Ci-opsin3 is a retinal photoisomerase similar to retinochrome and mammalian RGR. Both Ci-opsin1 and arrestin are specifically localized in the photoreceptor cells of the ocellus, whereas Ci -opsin2 is not expressed in the photoreceptors, but is co-localized in another population of neurons in the brain with PDE (Ci-PDE9 and Ci-PDE$\delta$). Ci-opsin3 is present in the entire region of the brain. Though five different cDNAs encoding Ga have been cloned, no transducin-type G protein has been found yet. Interestingly, one of G${\alpha}$i isoform is conspicuously expressed in the entire region of the brain. The Ci-opsin3 gene expression was observed in a broad area of the brain vesicle as well as in the visceral ganglion. Genes encoding ascidian homologs of CRALBP and ${\beta}$-CD, whose function is required for the mammalian visual cycle, are co-expressed with Ci-opsin3 in the brain vesicle and visceral ganglion. Localization of Ci-opsin3, CRALBP, and ${\beta}$-CD in a broad area of the brain suggests that the brain of the ascidian larva has a visual cycle system similar to that of the vertebrate RPE. Based on these data, we discuss the evolution of vertebrate visual systems.

  • PDF

A Triple Residual Multiscale Fully Convolutional Network Model for Multimodal Infant Brain MRI Segmentation

  • Chen, Yunjie;Qin, Yuhang;Jin, Zilong;Fan, Zhiyong;Cai, Mao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.962-975
    • /
    • 2020
  • The accurate segmentation of infant brain MR image into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is very important for early studying of brain growing patterns and morphological changes in neurodevelopmental disorders. Because of inherent myelination and maturation process, the WM and GM of babies (between 6 and 9 months of age) exhibit similar intensity levels in both T1-weighted (T1w) and T2-weighted (T2w) MR images in the isointense phase, which makes brain tissue segmentation very difficult. We propose a deep network architecture based on U-Net, called Triple Residual Multiscale Fully Convolutional Network (TRMFCN), whose structure exists three gates of input and inserts two blocks: residual multiscale block and concatenate block. We solved some difficulties and completed the segmentation task with the model. Our model outperforms the U-Net and some cutting-edge deep networks based on U-Net in evaluation of WM, GM and CSF. The data set we used for training and testing comes from iSeg-2017 challenge (http://iseg2017.web.unc.edu).

Making Thoughts Real - a Machine Learning Approach for Brain-Computer Interface Systems

  • Tengis Tserendondog;Uurstaikh Luvsansambuu;Munkhbayar Bat-Erdende;Batmunkh Amar
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권2호
    • /
    • pp.124-132
    • /
    • 2023
  • In this paper, we present a simple classification model based on statistical features and demonstrate the successful implementation of a brain-computer interface (BCI) based light on/off control system. This research shows study and development of light on/off control system based on BCI technology, which allows the users to control switching a lamp using electroencephalogram (EEG) signals. The logistic regression algorithm is used for classification of the EEG signal to convert it into light on, light off control commands. Training data were collected using 14-channel BCI system which records the brain signals of participants watching a screen with flickering lights and saves the data into .csv file for future analysis. After extracting a number of features from the data and performing classification using logistic regression, we created commands to switch on a physical lamp and tested it in a real environment. Logistic regression allowed us to quite accurately classify the EEG signals based on the user's mental state and we were able to classify the EEG signals with 82.5% accuracy, producing reliable commands for turning on and off the light.

뇌-컴퓨터 인터페이스를 활용한 2인용 협동댄스게임 구현 (Development of twosome collaboration dance game using Brain-Computer Interface)

  • 박태룡;김재현
    • 한국정보통신학회논문지
    • /
    • 제15권12호
    • /
    • pp.2575-2581
    • /
    • 2011
  • 최근에 이르러 뇌에 대한 연구가 체계적으로 이루어지고 있으며 뇌파를 활용하기 위한 Brain-Computer Interface(BCI) 기술에 대한 연구가 활발히 진행되고 있다. 특히, BCI 기기를 활용한 기능성 게임 기술이 관심의 대상이 되고 있다. 본 논문에서는 미국 뉴로 스카이사의 마인드셋 SDK(System Development Kit)를 이용하여 집중도과평정도에 따라 협동심과 사회성을 길러주는 기능성 게임으로 기존의 1인용 게임과 차별을 둔 "2인용 협동 댄스게임" 구현을 제안한다. 이 게임은 일반인의 뇌 활성화 및 ADHD 아동과 경도인지장애를 보이는 노인 치료에 도움을 주고 청소년들의 게임문화에 대한 사회적 순기능 역할을 할 것으로 기대한다.

해외과학자 유치방안에 관한 연구: 베트남 사례를 중심으로 (A Study on the Factors for Brain Gain: A Case of Vietnam)

  • 이창근;정선양
    • 기술혁신학회지
    • /
    • 제19권2호
    • /
    • pp.395-415
    • /
    • 2016
  • 고급 두뇌의 국제적 유동성이 증가함에 따라 우수한 해외 과학기술 인력의 유치는 국가 혁신역량을 좌우하는 주요한 요소가 되었다. 본 연구는 역두뇌유출에 관한 여러 이론들을 정리하여 해외우수인력을 유치하기 위한 요인들을 파악하였고, 이 요인들을 베트남 출신 해외과학자를 대상으로 설문을 실시하여 컨조인트 분석방법을 통하여 실증적으로 분석하였다. 분석한 결과, (1)높은 급여수준, (2)적합한 연구여건, (3)자녀교육 여건 순으로 중요도가 높은 것으로 분석되었고, 과학자 예우문화, 능력경력 발전기회는 중요도가 극히 낮은 것으로 나타났다. 적정한 급여수준에 대해서는 현 베트남 과학기술자들의 급여수준에 비해 파격적인 대우가 필요한 것으로 파악되어, 베트남 정부의 정책적 결정이 필요한 것으로 분석되었다.

머리 MR영상에서 자동화된 뇌영역 추출 (Automated Brain Region Extraction Method in Head MR Image Sets)

  • Cho, Dong-Uk;Kim, Tae-Woo;Shin, Seung-Soo
    • 한국콘텐츠학회논문지
    • /
    • 제2권3호
    • /
    • pp.1-15
    • /
    • 2002
  • 본 논문은 인간 뇌의 가시화 및 해석을 위하여 단일 채널 MR영상에서 자동화된 뇌영역 추출 방법을 제안한다. 이 방법은 쌍곡선 적합을 이용한 자동 문턱치화와 3차원 형태 학적 연산에 의하여 뇌 마스크 볼륨을 생성한다. 쌍곡선 적합은 MR영상의 히스토그램에 곡선을 적합할 때 오차를 줄일 수 있으며, 침식, 연결부위 레이블링, 최대특징 연산, 팽창 등 3차원 형태학적 연산은 문턱치화된 뇌 마스크로부터 생성된 정육각형 볼륨 마스크에 적용된다. 제안한 방법은 SPGR, T1, T2, PD MR영상 세트에서 뇌영역을 자동 추출할 수 있으며, 가장자리 슬라이스에도 적용 가능하고, 영상이 뇌 전체를 포함하지 않아도 된다. 실험에서 20 세트의 MR영상에 적용하여 수동 방법과 비교하여 0.97 이상의 유사도를 보였다.

  • PDF

SQUID를 이용한 심자도 기술의 개발동향 (Review of Magnetocardiography Technology based on SQUIDs)

  • 이용호;권혁찬;김진목;김기웅;유권규;박용기
    • Progress in Superconductivity
    • /
    • 제13권3호
    • /
    • pp.139-145
    • /
    • 2012
  • Electric activity of cardiac muscles generates magnetic fields. Magnetocardiography (or MCG) technology, measuring these magnetic signals, can provide useful information for the diagnosis of heart diseases. It is already about 40 years ago that the first measurement of MCG signals was done by D. Cohen using SQUID (superconducting quantum interference device) sensor inside a magnetically shielded room. In the early period of MCG history, bulky point-contact RF-SQUID was used as the magnetic sensor. Thanks to the development of Nb-based Josephson junction technology in mid 1980s and new design of tightly-coupled DC-SQUID, low-noise SQUID sensors could be developed in late 1980s. In around 1990, several groups developed multi-channel MCG systems and started clinical study. However, it is quite recent years that the true usefulness of MCG was verified in clinical practice, for example, in the diagnosis of coronary artery disease. For the practical MCG system, technical elements of MCG system should be optimized in terms of performance, fabrication cost and operation cost. In this review, development history, technical issue, and future development direction of MCG technology are described.

A Blood-brain Barrier Permeable Derivative of 5-Fluorouracil: Preparation, Intracellular Localization, and Mouse Tissue Distribution

  • Im, Jung-Kyun;Biswas, Goutam;Kim, Wan-Il;Kim, Kyong-Tai;Chung, Sung-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.873-879
    • /
    • 2011
  • 5-Fluorouracil (5-FU), an anticancer agent was covalently attached to the recently developed sorbitol-based G8 transporter, and the conjugate (7) with FITC was found to have an affinity toward mitochondria and to readily cross BBB to gain an entry into mouse brain. Measured by $IC_{50}$, the conjugate (9) without the fluorophore showed enhanced cytotoxic activity toward two types of multidrug-resistant cell lines. These results strongly suggest that the sorbitol-based G8 transporter can be utilized as a good CNS delivery vector.