• Title/Summary/Keyword: Brain Technology

Search Result 1,273, Processing Time 0.027 seconds

Neuroprotective Effects of Protein Tyrosine Phosphatase 1B Inhibition against ER Stress-Induced Toxicity

  • Jeon, Yu-Mi;Lee, Shinrye;Kim, Seyeon;Kwon, Younghwi;Kim, Kiyoung;Chung, Chang Geon;Lee, Seongsoo;Lee, Sung Bae;Kim, Hyung-Jun
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.280-290
    • /
    • 2017
  • Several lines of evidence suggest that endoplasmic reticulum (ER) stress plays a critical role in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Protein tyrosine phosphatase 1B (PTP1B) is known to regulate the ER stress signaling pathway, but its role in neuronal systems in terms of ER stress remains largely unknown. Here, we showed that rotenone-induced toxicity in human neuroblastoma cell lines and mouse primary cortical neurons was ameliorated by PTP1B inhibition. Moreover, the increase in the level of ER stress markers ($eIF2{\alpha}$ phosphorylation and PERK phosphorylation) induced by rotenone treatment was obviously suppressed by concomitant PTP1B inhibition. However, the rotenone-induced production of reactive oxygen species (ROS) was not affected by PTP1B inhibition, suggesting that the neuroprotective effect of the PTP1B inhibitor is not associated with ROS production. Moreover, we found that MG132-induced toxicity involving proteasome inhibition was also ameliorated by PTP1B inhibition in a human neuroblastoma cell line and mouse primary cortical neurons. Consistently, downregulation of the PTP1B homologue gene in Drosophila mitigated rotenone- and MG132-induced toxicity. Taken together, these findings indicate that PTP1B inhibition may represent a novel therapeutic approach for ER stress-mediated neurodegenerative diseases.

Exploring the Efficacy of Short-term Mental Health Healing Programs: A Case Study of Civil Servants in Jeonnam

  • Seojae Jeon;Hyoung-won Kang;Namju Lee;Junghan Lee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.498-507
    • /
    • 2024
  • In the field of mental health care, long-term healing programs have gained widespread recognition for their effectiveness in promoting well-being. However, the efficacy of shorter-term interventions, such as 1-night 2-day programs, remains relatively understudied. The primary objective of this initiative is twofold: firstly, to enhance the overall well-being and resilience of participants, and secondly, to investigate the program's potential to ameliorate specific mental health indicators. These indicators include physical stress levels, autonomic nervous system health, brain activity, brain stress, and concentration. A 1-night 2-day mental health healing program was implemented for 560 civil servants from Jeollanam-do (mean age 47.87 yrs). The focus was on measuring changes through baseline assessments before participation and post-program assessments upon completion. Measurements included physical stress index, autonomic nervous system health, brain activity level, brain stress, and brain concentration. There was a significant decrease in physical stress, as well as a significant decrease in autonomic nervous system health (p<0.05). Although there was no significant difference in brain activity level, there was a tendency for brain activity level to stabilize in the high-frequency range. Additionally, a significant decrease in stress levels and an improvement in concentration were observed. Incorporating 1-night 2-day relaxation programs into our daily lives offers a holistic approach to caring for both our physical and mental health, providing essential moments of rejuvenation and self-care that contribute to overall well-being and fulfillment.

Real-Time Temporal Dynamics of Bicistronic Expression Mediated by Internal Ribosome Entry Site and 2A Cleaving Sequence

  • Lee, Soomin;Kim, Jeong-Ah;Kim, Hee-Dae;Chung, Sooyoung;Kim, Kyungjin;Choe, Han Kyoung
    • Molecules and Cells
    • /
    • v.42 no.5
    • /
    • pp.418-425
    • /
    • 2019
  • Multicistronic elements, such as the internal ribosome entry site (IRES) and 2A-like cleavage sequence, serve crucial roles in the eukaryotic ectopic expression of exogenous genes. For utilization of multicistronic elements, the cleavage efficiency and order of elements in multicistronic vectors have been investigated; however, the dynamics of multicistronic element-mediated expression remains unclear. Here, we investigated the dynamics of encephalomyocarditis virus (EMCV) IRES- and porcine teschovirus-1 2A (p2A)-mediated expression. By utilizing real-time fluorescent imaging at a minute-level resolution, we monitored the expression of fluorescent reporters bridged by either EMCV IRES or p2A in two independent cultured cell lines, HEK293 and Neuro2a. We observed significant correlations for the two fluorescent reporters in both multicistronic elements, with a higher correlation coefficient for p2A in HEK293 but similar coefficients for IRES-mediated expression and p2A-mediated expression in Neuro2a. We further analyzed the causal relationship of multicistronic elements by convergent cross mapping (CCM). CCM revealed that in all four conditions examined, the expression of the preceding gene causally affected the dynamics of the subsequent gene. As with the cross correlation, the predictive skill of p2A was higher than that of IRES in HEK293, while the predictive skills of the two multicistronic elements were indistinguishable in Neuro2a. To summarize, we report a significant temporal correlation in both EMCV IRES- and p2A-mediated expression based on the simple bicistronic vector and real-time fluorescent monitoring. The current system also provides a valuable platform to examine the dynamic aspects of expression mediated by diverse multicistronic elements under various physiological conditions.

ERRATUM

  • Le, Minh Ha;Do, Thi Thanh Huyen;Phan, Van Kiem;Chau, Van Minh;Nguyen, Thi Hong Van;Nguyen, Xuan Nhiem;Bui, Huu Tai;Pham, Quoc Long;Bui, Kim Anh;Kim, Seung Hyun;Hong, Hye-Jin;Kim, Sohyun;Koh, Young-Sang;Kim, Young Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2218-2218
    • /
    • 2013

Brain-Computer Interface in Stroke Rehabilitation

  • Ang, Kai Keng;Guan, Cuntai
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.139-146
    • /
    • 2013
  • Recent advances in computer science enabled people with severe motor disabilities to use brain-computer interfaces (BCI) for communication, control, and even to restore their motor disabilities. This paper reviews the most recent works of BCI in stroke rehabilitation with a focus on methodology that reported on data collected from stroke patients and clinical studies that reported on the motor improvements of stroke patients. Both types of studies are important as the former advances the technology of BCI for stroke, and the latter demonstrates the clinical efficacy of BCI in stroke. Finally some challenges are discussed.

Discovering cis-regulatory motifs by combining multiple predictors

  • Chang, Hye-Shik;Hwang, Kyu-Woong;Kim, Dong-Sup
    • Bioinformatics and Biosystems
    • /
    • v.2 no.2
    • /
    • pp.52-57
    • /
    • 2007
  • The computational discovery of transcription factor binding site is one of the important tools in the genetic and genomic analysis. Rough prediction of gene regulation network and finding possible co-regulated genes are typical applications of the technique. Countless motif-discovery algorithms have been proposed for the past years. However, there is no dominant algorithm yet. Each algorithm does not give enough accuracy without extensive information. In this paper, we explore the possibility of combining multiple algorithms for the one integrated result in order to improve the performance and the convenience of researchers. Moreover, we apply new high order information that is reorganized from the set of basis predictions to the final prediction.

  • PDF

Active Implantable Device Technology Trend: BCI Application Focus (능동형 임플란터블 디바이스 기술동향: BCI 응용 중심)

  • Lee, S.Q.;Byun, C.W.;Kim, Y.G.;Park, H.I.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.6
    • /
    • pp.27-39
    • /
    • 2017
  • A variety of medical devices are utilized to repair or help injured body functions after accidental injury(such as a traffic accident), population aging, or disease. Such medical devices are being actively researched and developed in portable form, skin patchable type, and further, implantable form. In the future, active implantable medical devices for neuro and brain sciences are expected to be developed. Active implantable medical devices that detect brain signals and control neurology for a wider understanding of human cognition and nerve functions, and for an understanding and treatment of various diseases, are being actively pursued for future use. In this paper, the core elements of implantable devices that can be applied to neuro and brain sciences are classified into electrode technologies for bio-signal acquisition and stimulation, analog/digital circuit technologies for signal processing, human body communication technologies, wireless power transmission technologies for continuous device use, and device integration technologies to integrate them. In each chapter, the latest technology development trends for each detailed technology field are reviewed.

The robot for education in fields including structure, sensory and brain function

  • Yamaji, Koki;Mizuno, Takeshi;Ishil, Naohiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.224-229
    • /
    • 1993
  • The robot has spread remarkably, is used not only in manufacturing but also in various other fields, and is becoming more popular in everyday life. At the same time, the functional demands for all manner of robots have been diversified. Education regarding robots has been developing in the computer, mechanism, sensor and artificial intelligence fields. Technical education which integrates all of the above is necessary and in great demand. We have developed an educational robot so that it can be used in education in fields including structure, sensory and brain function and can also organically integrate those.

  • PDF