뇌손상에서 생존자의 경우 지속적인 장애를 유발하고 뇌출혈에 따른 경막외 혈종(EDH) 및 경막하 혈종(SDH)은 주요 임상 질환 중 하나라고 볼 수 있다. 본 연구에서는 컴퓨터단층검사(CT; Computed Tomography) 영상을 기반으로 뇌출혈에 따른 혈종을 자동 분할하고 3차원으로 모델링하고자 하였다. 혈종의 자동 분할을 위해서 개선된 GVF(gradient vector flow) 알고리즘을 구현하였다. 영상으로부터 경사 벡터를 계산과 반복계산을 거친 후 자동 분할을 하고 분할 좌표를 이용해서 3차원 모델을 생성하였다. 실험결과, 혈종의 경계에 대해서 정확하게 분할 성공하였다. 경계 부분과 얇은 혈종부분에서도 결과가 좋은 것으로 나타났고, 3차원 모델을 통해서 여러 방향에서 혈종의 강도, 확산 방향, 면적 등을 알 수 있었다. 본 연구에서 개발 한 뇌출혈 부위의 평면정보와 3차원 모델은 의료진에게 보조적인 진단자료로서 활용 될 수 있을 것으로 판단한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권9호
/
pp.4336-4354
/
2018
Fuzzy C-means (FCM) algorithm is a most usually technique for medical image segmentation. But conventional FCM fails to perform well enough on magnetic resonance imaging (MRI) data with the noise and intensity inhomogeneity (IIH). In the paper, we propose a Gamma correction conditional FCM algorithm with spatial information (GcsFCM) to solve this problem. Firstly, the pre-processing, Gamma correction, is introduced to enhance the details of images. Secondly, the spatial information is introduced to reduce the effect of noise. Then we introduce the effective neighborhood mechanism into the local space information to improve the robustness for the noise and inhomogeneity. And the mechanism describes the degree of participation in generating local membership values and building clusters. Finally, the adjustment mechanism and the spatial information are combined into the weighted membership function. Experimental results on four image volumes with noise and IIH indicate that the proposed GcsFCM algorithm is more effective and robust to noise and IIH than the FCM, sFCM and csFCM algorithms.
An image segmentation result depends on pre-processing steps such as contrast enhancement, edge detection, and smooth filtering etc. Especially medical images are low contrast and contain some noises. Therefore, the contrast enhancement and noise removal techniques are required in the pre-processing. In this study, we present an extension by a novel histogram equalization in which both local and global contrast is enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Most important is that original image information can be used for both global brightness preserving and local contrast enhancement, and image quality improvement filtering. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.
In the three-dimensional domain image expressed with two-dimensional slice images, such as fMRI images and multi-slice CT images, we propose the three-dimensional domain automatic segmentation for the purpose of extracting region. In this paper, we segmented each domain from the fMRI images of the head of people and monkey. We used the neural network "Pulse-Coupled Neural Network" which is one of the models of visual cortex of the brain based on the knowledge from neurophysiology as the technique. By using this technique, we can segment the region without any learning. Then, we reported the result of division of each domain and extraction to the fMRI slice images of human's head using "three-dimensional Pulse-Coupled Neural Network" which is arranged and created the neuron in the shape of a three-dimensional lattice.
영상분할은 의료 임상연구에서 가장 중요한 과정 중의 하나이다. 특히 뇌 MRI영상에서 해마의 위축은 알츠하이머병 진행과정의 초기 특정 표지자로서 해마의 볼륨은 초기 알츠하이머병의 임상적 진단에 도움이 된다. 정확한 볼륨 측정에 있어서 해마 영역의 분할은 중요한 역할을 한다. 하지만 MRI 영상에서 해마영역은 낮은 대조도, 낮은 신호 대 잡음 비율, 불연속성 경계의 특징을 보이며, 이러한 특징들은 MRI 영상에서 해마의 정확한 분할을 어렵게 만든다. 이 문제를 해결하기 위해 전처리 과정으로 실험영상에서 관심영역을 선택한 후 반전영상과 원본영상과의 차영상 대조도를 향상시킨 후 비등방성 확산(Anisotropic diffusion) 필터링, 가우시안(Gaussian) 필터링을 수행하였다. 마지막으로 두 개의 레벨 셋(Level Set)기반의 동적 윤곽선(Active Contour) 모델을 결합하여 해마를 분할하는 방법을 제안하였다. 제안된 해마분할방법의 유효성을 다양한 방법으로 평가한 결과 제안된 해마분할방법은 분할 속도와 정확도 면에서 뚜렷하게 개선이 되었음을 확인하였다. 결론적으로 제안된 방법이 해마와 같은 특징을 가진 영역을 분할하는데 적합하다고 할 수 있다. 향후 다른 연구 기법들과 결합할 경우 더욱 잠재성이 증대될 수 있을 것이다.
Kim, Seong Ho;Choi, Seung Hong;Yoon, Tae Jin;Kim, Tae Min;Lee, Se-Hoon;Park, Chul-Kee;Kim, Ji-Hoon;Sohn, Chul-Ho;Park, Sung-Hye;Kim, Il Han
Investigative Magnetic Resonance Imaging
/
제19권2호
/
pp.88-98
/
2015
Purpose: To compare the interobserver and intraobserver reliability of mean apparent diffusion coefficient (ADC) values using contrast-enhanced (CE) T1 weighted image (WI) and T2WI as structural images between manual and semiautomatic segmentation methods. Materials and Methods: Between January 2011 and May 2013, 28 patients who underwent brain MR with diffusion weighted image (DWI) and were pathologically confirmed as having glioblastoma participated in our study. The ADC values were measured twice in manual and semiautomatic segmentation methods using CE-T1WI and T2WI as structural images to obtain interobserver and intraobserver reliability. Moreover, intraobserver reliabilities of the different segmentation methods were assessed after subgrouping of the patients based on the MR findings. Results: Interobserver and intraobserver reliabilities were high in both manual and semiautomatic segmentation methods on CE-T1WI-based evaluation, while interobserver reliability on T2WI-based evaluation was not high enough to be used in a clinical context. The intraobserver reliability was particularly lower with the T2WI-based semiautomatic segmentation method in the subgroups with involved $lobes{\leq}2$, with partially demarcated tumor borders, poorly demarcated inner margins of the necrotic portion, and with perilesional edema. Conclusion: Both the manual and semiautomatic segmentation methods on CE-T1WI-based evaluation were clinically acceptable in the measurement of mean ADC values with high interobserver and intraobserver reliabilities.
Nowadays GPU (Graphic Process Unit) is not only used to show and render some images, but also for another computation. In this paper, we tried to use GPU to do some morphology operations to remove skull from axial MRI images. This skull removing process is an important step in brain segmentation because we would like to work with the brain only, without any skull on it. The result shows that simple morphology operations to remove skull has been successfully applied on MRI images, but there are still many parts that can be develop to get better images.
Heterotrimeric GTP binding proteins (G proteins) transduce signals of a variety of hormones and neurotransmitters. Go is one of the most abundant G proteins in the brain and classified as the Gi/Go family due to their sequence homology to Gi proteins. While the Gi proteins inhibit adenylyl cyclase and decrease the intracellular cAMP concentration, the functions of Go is not clearly understood despite their sequence homology to Gi. The promeylocytic leukemia zinc finger protein (PLZF) is a DNA binding transcription factor and is expressed highly in central nervous system (CNS). Several studies reported that PLZF may be involved in regulation segmentation/differentiation during CNS development. Here, I report that the alpha subunit of Go (Go ) interacts with PLZF. The interaction between Goa and PLZF was verified by using GST pulldown assay and co-immunoprecipitation. Our findings indicate that Goa could modulate gene expression via interaction with PLZF during neuronal or brain development.
영상에서의 경계선추출은 영상의 강도의 변화를 이용한 경계영역의 가시화 기법이므로 gray level 영상이 가지는 강도를 이용하여 에지를 찾을 수 있다. 뇌 영상에는 MRI 영상과 같이 해부학적인 정보가 큰 영상과, PET 영상같이 perfusion으로 분석해야 할 영상이 있는데 그 경계가 뚜렷한 MRI 영상과 달리 PET 뇌 영상은 영상의 특성상 경계영역의 구분이 모호한 실정이다. 본 논문에서는 이러한 영상의 특성에 따라 뇌 영상에서 영상 강도에 대해 등분할을 한 후 vectorgram에서 magnitude의 영역을 선택하여 영상을 분할 하였다. 그리고 PET 와 MRI영상과 현미경 영상에 대한 결과를 비교하였다. Vertcrgram은 에지정보를 가지는 영상에 대해 벡터요소를 그래프화 한 것으로 방향성에 대한 평가를 통해 영역 분할을 하였다. 이러한 PET 영상의 2차원 분할 방법은 3차원 PET 영상 분석에 응용될 수 있을 것이다.
A platform is developed for fast and effective functional mapping of human brain, which can allow semi-automatically the whole processes of an image segmentation, a fusion of MR and PET images, and 3-D rendering of volumetric data, including DICOM-based image transfers from PACS archiver within a short period of time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.