• Title/Summary/Keyword: Brain Phantom

Search Result 167, Processing Time 0.027 seconds

Usefulness of Brain Phantom Made by Fused Filament Fabrication Type 3D Printer (적층 제조형 방식의 3D 프린터로 제작한 뇌 팬텀의 유용성)

  • Lee, Yong-Ki;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.453-460
    • /
    • 2020
  • The price of the Brain phantom (Hoffman 3D brain phantom) used in nuclear medicine is quite expensive, it is difficult to be purchased by a medical institution or an educational institution. Therefore, the purpose of present research is to produce a low-price 3D brain phantom and evaluate its usefulness by using a 3D printer capable of producing 3D structures. The New 3D brain phantom consisted of 36 slices 0.7 mm thick and 58 slices 1.5 mm thick. A 0.7 mm thick slice was placed between 1. 5 mm thick slices to produce a composite slice. ROI was set at the gray matter and white matter scanned with CT to measure and compare the HU, in order to verify the similarity between PLA which was used as the material for the New 3D brain phantom and acrylic which was used as the material for Hoffman 3D brain phantom. As a result of measuring the volume of each Phantom, the error rate was 3.2% and there was no difference in the signal intensity in five areas. However, there was a significant difference in the average values of HU which was measured at the gray and white matter to verify the similarity between PLA and acrylic. By reproducing the previous Hoffman 3D brain phantom with a 100 times less cost, I hope this research could contribute to be used as the fundamental data in the areas of 3D printer, nuclear medicine and molecular imaging and to increasing the distribution rate of 3D brain phantom.

Realistic Head Phantom for Evaluation of Brain Stroke Localization Methods Using 3D Printer

  • Lee, Juneseok;Bang, Jihoon;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.254-258
    • /
    • 2016
  • In this paper, a brain phantom for evaluating brain stroke localization is proposed. To evaluate brain stroke localization, a phantom imitating three-dimensional (3D) simulation environment is needed. Mold for the proposed phantom was printed by a 3D printer and the interior of the phantom consists of 5 different brain tissue materials. Each of the brain tissue materials has the conductivity and permittivity similar to those of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) standards for a frequency band from 0.5 to 2 GHz.

Usefulness of Image Registration in Brain Perfusion SPECT (Brain Perfusion SPECT에서 Image Registration의 유용성)

  • Song, Ho-June;Lim, Jung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.60-64
    • /
    • 2011
  • Purpose: The brain perfusion SPECT is the examination which is able to know adversity information related brain disorder. But brain perfusion SPECT has also high failure rates by patient's motions. In this case, we have to use two days method and patients put up with many disadvantages. We think that we don't use two days method in brain perfusion SPECT, if we can use registration method. So this study has led to look over registration method applications in brain perfusion SPECT. Materials and Methods: Jaszczak, Hoffman and cylindrical phantoms were used for acquiring SPECT image data on varying degree in x, y, z axes. The phantoms were filled with $^{99m}Tc$ solution that consisted of a radioactive concentration of 111 MBq/mL. Phantom images were acquired through scanning for 5 sec long per frame by using Triad XLT9 triple head gamma camera (TRIONIX, USA). We painted the ROI of registration image in brain data. So we calculated the ROIratio which was different original image counts and registration image counts. Results: When carring out the experiments under the same condition, total counts differential was from 3.5% to 5.7% (mean counts was from 3.4% to 6.8%) in phantom and patients data. In addition, we also run the experiments in the double activity condition. Total counts differential was from 2.6% to 4.9% (mean counts was from 4.1% to 4.9%) in phantom and patients data. Conclusion: We can know that original and registration data are little different in image analysis. If we use the image registration method, we can improve disadvantage of two days method in brain perfusion SPECT. But we must consider image registration about the distance differences in x, y, z axes.

  • PDF

Accuracy of image registration for radiation treatment planning using a brain phantom

  • Jin, Ho-Sang;Suh, Tae-Suk;Song, Ju-Young;Juh, Ra-Hyeong;Kwark, Chul-Eun;Lee, Hyoung-Koo;Choe, Bo-Young
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.106-106
    • /
    • 2002
  • Purpose: The purposes of our study are (1) to develop a brain phantom which can be used for multimodal image registration, (2) to evaluate the accuracy of image registration with the home-made phantom. Method: A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using chamfer matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods for CT, MR imaging and Pb rods for SPECT imaging. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process.

  • PDF

Development of Human-Head-Mimicking Phantom for Brain Treatment Using Focused Ultrasound (집속 초음파 뇌 질환 치료를 위한 두부 유사 팬텀의 개발)

  • Min, Jeonghwa;Kim, Juyoung;Noh, Sicheol;Choi, Heungho
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.433-439
    • /
    • 2013
  • In this study, human head-mimicking phantom was developed for brain disease treatment study using focused ultrasound. Acoustic parameters of skin, skull and brain were investigated through literature investigation and adequate substitutes according to each tissue were suggested. In the case of skin phantom, construction ratio of glycerol-based TMM phantom was controlled to mimic real skin. The suitability of skull substitutes was evaluated through measurement of acoustic parameters. In the case of brain phantom, transparent egg white phantom was used to observe thermal properties of focused ultrasound. Combined human-head-mimicking phantom using each substitutes was fabricated for development of brain disease treatment protocol. Denaturation of brain phantom according to ultrasonic condition was observed for validation.

Development of a Brain Phantom for Multimodal Image Registration in Radiotherapy Treatment Planning

  • H. S. Jin;T. S. Suh;R. H. Juh;J. Y. Song;C. B. Y. Choe;Lee, H .G.;C. Kwark
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.450-453
    • /
    • 2002
  • In radiotherapy treatment planning, it is critical to deliver the radiation dose to tumor and protect surrounding normal tissue. Recent developments in functional imaging and radiotherapy treatment technology have been raising chances to control tumor saving normal tissues. A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using surface matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods, Pb rods for CT, MR, and SPECT imaging, respectively. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. For an optimization algorithm of image registration, we used Downhill simplex algorithm suggested as a fast surface matching algorithm. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom and minimized cost functions of the optimization algorithm. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process. The errors of image registration of CT-MR and CT-SPECT were within 2mm and 4mm, respectively. Since these errors were considered within a reasonable margin from the phantom study, the phantom is expected to be used for conventional image registration between multimodal image datasets..

  • PDF

Development and Evaluation of the Usefulness for Hoffman Brain Phantom Based on 3D Printing Technique (3D 프린팅 기법 기반의 Hoffman Brain 팬텀 개발 및 유용성 평가)

  • Park, Hoon-Hee;Lee, Joo-Young
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.441-446
    • /
    • 2019
  • The purpose of this paper is to recognize the usefulness of the Phantom produced with 3D printing technology by reproducing the original phantom with 3D printing technology. Using CT, we obtained information from the original phantom. The acquired file was printed by the SLA method of ABS materials. For inspection, SPECT/CT was used to obtain images. We filled the both Phantom with a solution mixed with 99mTcO4 1 mCi in 1 liter of water and acq uired images in accordance with the standard protocol. Using Image J, the SNR for each slice of the image was obtained. As a reference images, AC images were used. For the analysis of acquired images, ROI was set in the White mater and Gray mater sections of each image, and the average Intensity Value within the ROI were compared. According to the results of this study, 3D printed phantom's SNR is about 0.1 higher than the conventional phantom. And the ratio of Intensity Value was shown in the original 1 : 3.4, and the printed phantom was shown to be 1 : 3.2. Therefore, if Calibration Value is applied, It is assumed that it can be used as an alternative to the original.

MR-based Partial Volume Correction for $^{18}$F-PET Data Using Hoffman Brain Phantom

  • Kim, D. H.;Kim, H. J.;H. K. Jeong;H. K. Son;W. S. Kang;H. Jung;S. I. Hong;M. Yun;Lee, J. D.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.322-323
    • /
    • 2002
  • Partial volume averaging effect of PET data influences on the accuracy of quantitative measurements of regional brain metabolism because spatial resolution of PET is limited. The purpose of this study was to evaluate the accuracy of partial volume correction carried out on $^{18}$ F-PET images using Hoffman brain phantom. $^{18}$ F-PET Hoffman phantom images were co-registered to MR slices of the same phantom. All the MR slices of the phantom were then segmented to be binary images. Each of these binary images was convolved in 2 dimensions with the spatial resolution of the PET. The original PET images were then divided by the smoothed binary images in slice-by-slice, voxel-by-voxel basis resulting in larger PET image volume in size. This enlarged partial volume corrected PET image volume was multiplied by original binary image volume to exclude extracortical region. The evaluation of partial volume corrected PET image volume was performed by region of interests (ROI) analysis applying ROIs, which were drawn on cortical regions of the original MR image slices, to corrected and original PET image volume. From the ROI analysis, range of regional mean values increases of partial volume corrected PET images was 4 to 14%, and average increase for all the ROIs was about 10% in this phantom study. Hoffman brain phantom study was useful for the objective evaluation of the partial volume correction method. This MR-based correction method would be applicable to patients in the. quantitative analysis of FDG-PET studies.

  • PDF

Comparative Evaluation of Single-Energy CT and Dual-Energy CT in Brain Angiography : Using a Rando Phantom and OSLD (뇌혈관조영검사 시 단일에너지 CT와 이중에너지 CT의 비교평가 : 화질 및 유효선량평가)

  • Byeong-Geun Shin;Seong-Min Ahn
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.809-817
    • /
    • 2023
  • Single source and dual source measurements using anthropomorphic phantoms in which the phantoms are lined up in human body equivalents use OSLD (Optically Stimulated Luminescence Dosimeter), so the effective dose is calculated using OSLD. For hospital images, SNR (Signal to Noise Ratio) and CNR (Contrast to Noise Ratio) were measured in MCA (Middle Cerebral Artery) for single source and dual source, and for phantom images, SNR and CNR were measured for brain parenchyma of single source and dual source. For hospital imaging, SNR and CNR were measured in MCA for both single-source and dual-source, and for phantom images, SNR and CNR were measured for brain parenchyma from single-source and dual-source. As a result of comparing the SNR and CNR of the hospital image and the phantom image, there was no statistical difference. Comparing patient doses in hospital images, the effective dose of the dual source was 53.53% less and the effective dose of the dual energy phantom was 57.94% less. The dose can be increased in other areas, but the cerebrovascular area is useful because the dose is small.

Accuracy Evaluation of Three-Dimensional Multimodal Image Registration Using a Brain Phantom (뇌팬톰을 이용한 삼차원 다중영상정합의 정확성 평가)

  • 진호상;송주영;주라형;정수교;최보영;이형구;서태석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.33-41
    • /
    • 2004
  • Accuracy of registration between images acquired from various medical image modalities is one of the critical issues in radiation treatment planing. In this study, a method of accuracy evaluation of image registration using a homemade brain phantom was investigated. Chamfer matching of CT-MR and CT-SPECT imaging was applied for the multimodal image registration. The accuracy of image correlation was evaluated by comparing the center points of the inserted targets of the phantom. The three dimensional root-mean-square translation deviations of the CT-MR and CT-SPECT registration were 2.1${\pm}$0.8 mm and 2.8${\pm}$1.4 mm, respectively. The rotational errors were < 2$^{\circ}$ for the three orthogonal axes. These errors were within a reasonable margin compared with the previous phantom studies. A visual inspection of the superimposed CT-MR and CT- SPECT images also showed good matching results.