• Title/Summary/Keyword: Brain Magnetic resonance image (MRI)

Search Result 151, Processing Time 0.024 seconds

Accelerating Magnetic Resonance Fingerprinting Using Hybrid Deep Learning and Iterative Reconstruction

  • Cao, Peng;Cui, Di;Ming, Yanzhen;Vardhanabhuti, Varut;Lee, Elaine;Hui, Edward
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.293-299
    • /
    • 2021
  • Purpose: To accelerate magnetic resonance fingerprinting (MRF) by developing a flexible deep learning reconstruction method. Materials and Methods: Synthetic data were used to train a deep learning model. The trained model was then applied to MRF for different organs and diseases. Iterative reconstruction was performed outside the deep learning model, allowing a changeable encoding matrix, i.e., with flexibility of choice for image resolution, radiofrequency coil, k-space trajectory, and undersampling mask. In vivo experiments were performed on normal brain and prostate cancer volunteers to demonstrate the model performance and generalizability. Results: In 400-dynamics brain MRF, direct nonuniform Fourier transform caused a slight increase of random fluctuations on the T2 map. These fluctuations were reduced with the proposed method. In prostate MRF, the proposed method suppressed fluctuations on both T1 and T2 maps. Conclusion: The deep learning and iterative MRF reconstruction method described in this study was flexible with different acquisition settings such as radiofrequency coils. It is generalizable for different in vivo applications.

Rotter estimation of ″sum-of-squres″ to improve the reconstructed image quality in Sensitivity Encoding (SENSE)

  • Yun, Sung-Dae;Song, Myung-Sung;Chung, Jun-Young;Park, Hyun-Wook
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.72-72
    • /
    • 2003
  • In SENSE, division process is used in order to get a raw sensitivity map. This process requires denominator which is estimated by "sum-of-squres". However, this image does not have uniformbrightness because of the non-symmetrical property of RF coil arrays. Thus, this study is focused on better estimation of the denominator image.

  • PDF

An Unusual Case of Japanese Encephalitis Involving Unilateral Deep Gray Matter and Temporal Lobe on Diffusion-Weighted MRI

  • Seok, Hee Young;Lee, Dong Hoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.250-253
    • /
    • 2016
  • Acute Japanese encephalitis (JE) is an endemic viral infectious disease in various parts of Far East and Southeast Asian countries including Korea. Bilateral thalami are the most common involving sites in JE. Other areas including the basal ganglia, substantia nigra, red nucleus, pons, cerebral cortex and cerebellum may be also involved. We report an extremely unusual brain diffusion-weighted MR imaging (DWI) findings in a 53-year-old man with serologically proven JE involving unilateral deep gray matter and temporal lobe, which shows multifocal high signal intensities in left thalamus, left substantia nigra, left caudate nucleus and left medial temporal cortex on T2-weighted image and DWI with iso-intensity on apparent diffusion coefficient (ADC) map.

Bilateral Cortical Blindness Caused by Tentorial Herniation due to Brain Tumor

  • Jeon, Jee-Ho;Hwang, Hyung-Sik;Moon, Seung-Myung;Choi, Sun-Kil
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.6
    • /
    • pp.421-424
    • /
    • 2007
  • Two patients, one with glioblastoma multiforme [GM] in the right thalamus and the other with meningioma at the right frontal convexity, had suffered bilateral cortical blindness after transtentorial herniation. On one of those patients, bilateral cortical blindness had occurred due to acute obstructive hydrocephalus caused by GM and on the other patient, cortical blindness had developed after acute hemorrhage from meningioma. Bilateral occipital lobes of those patients showed signal change on the brain magnetic resonance image [MRI]. There were no ophthalmologic abnormalities on fundoscopy and ophthalmologic examination. After recovery of consciousness, cortical blindness was detected in both patients, and during gradual recovery period, visual function was slowly recovered. The pattern of visual evoked potential [VEP] at 7 weeks and 12 weeks after herniation was normalized gradually. Cortical blindness due to herniation was reversible, even though the high signals of bilateral visual cortex still existed on MRI 16 month later in case 2.

MRI Image Super Resolution through Filter Learning Based on Surrounding Gradient Information in 3D Space (3D 공간상에서의 주변 기울기 정보를 기반에 둔 필터 학습을 통한 MRI 영상 초해상화)

  • Park, Seongsu;Kim, Yunsoo;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.178-185
    • /
    • 2021
  • Three-dimensional high-resolution magnetic resonance imaging (MRI) provides fine-level anatomical information for disease diagnosis. However, there is a limitation in obtaining high resolution due to the long scan time for wide spatial coverage. Therefore, in order to obtain a clear high-resolution(HR) image in a wide spatial coverage, a super-resolution technology that converts a low-resolution(LR) MRI image into a high-resolution is required. In this paper, we propose a super-resolution technique through filter learning based on information on the surrounding gradient information in 3D space from 3D MRI images. In the learning step, the gradient features of each voxel are computed through eigen-decomposition from 3D patch. Based on these features, we get the learned filters that minimize the difference of intensity between pairs of LR and HR images for similar features. In test step, the gradient feature of the patch is obtained for each voxel, and the filter is applied by selecting a filter corresponding to the feature closest to it. As a result of learning 100 T1 brain MRI images of HCP which is publicly opened, we showed that the performance improved by up to about 11% compared to the traditional interpolation method.

Optimize KNN Algorithm for Cerebrospinal Fluid Cell Diseases

  • Soobia Saeed;Afnizanfaizal Abdullah;NZ Jhanjhi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Medical imaginings assume a important part in the analysis of tumors and cerebrospinal fluid (CSF) leak. Magnetic resonance imaging (MRI) is an image segmentation technology, which shows an angular sectional perspective of the body which provides convenience to medical specialists to examine the patients. The images generated by MRI are detailed, which enable medical specialists to identify affected areas to help them diagnose disease. MRI imaging is usually a basic part of diagnostic and treatment. In this research, we propose new techniques using the 4D-MRI image segmentation process to detect the brain tumor in the skull. We identify the issues related to the quality of cerebrum disease images or CSF leakage (discover fluid inside the brain). The aim of this research is to construct a framework that can identify cancer-damaged areas to be isolated from non-tumor. We use 4D image light field segmentation, which is followed by MATLAB modeling techniques, and measure the size of brain-damaged cells deep inside CSF. Data is usually collected from the support vector machine (SVM) tool using MATLAB's included K-Nearest Neighbor (KNN) algorithm. We propose a 4D light field tool (LFT) modulation method that can be used for the light editing field application. Depending on the input of the user, an objective evaluation of each ray is evaluated using the KNN to maintain the 4D frequency (redundancy). These light fields' approaches can help increase the efficiency of device segmentation and light field composite pipeline editing, as they minimize boundary artefacts.

The Magnetic Resonance Images and Clinical Features of the Asymptomatic Pineal Cysts (무증상 송과체 낭종의 임상적 양상 및 자기공명영상 소견)

  • Lim, Kang-Taek;Park, Se-Hyuck;Shin, Dong-Ik;Cho, Byung Moon;Oh, Sae Moon;Hwang, Do Yun
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.1
    • /
    • pp.113-117
    • /
    • 2000
  • Objective : Asymptomatic cyst of the pineal gland is a common incidental finding in adults on computerized tomography or magnetic resonance image(MRI) or at postmortem examination. This study was conducted to identify MRI findings of the benign pineal cysts and to determine the proper management of asymptomatic pineal cysts. Methods : From January 1995 to March 1999, 13 cases of asymptomatic pineal cysts were diagnosed incidentally on MRI. The mean age of the patients at diagnosis was 43 years(ranged 8 to 69 years). Five patients were females and eight patients were males. We analyzed the clinical presentations and MRI findings. Results : Clincal features were not related to pineal cysts in all 13 cases included posttraumatic headache in seven cases, headache related to brain tumor in two cases, one of facial palsy, one of diabetic neuropathy, and two of other diseases. MRI demonstrated a well-demarcated mass lesion(mean 1.3cm in diameter) of low signal intensity on T1-weighted images and high signal intensity on T2-weighted images. Gadolinium-enhanced MRI, performed in 10 cases, demonstrated a rim enhancement. Hydrocephalus was not present in all cases. Follow-up MRI(ranged 12 to 36 months) obtained in 3 of the 13 patients showed stability of cyst size. After symptomatic treatment, presenting symptoms were resolved in all patients and symptom related to pineal cysts have not been developed during follow up period(mean 27 months). Conclusion : The long-term behavior of asymptomatic pineal cysts is still unknown. But we advocate conservative management of these benign pineal cysts that may be developmental variants of normal pineal gland.

  • PDF

Quantification of Metabolic Alterations of Dorsolateral Pre-Frontal Cortex in Depression SD Rat by MR Spectroscopy

  • Hong, Sung-Tak;Choe, Bo-Young;Choi, Chi-Bong;Park, Cheong-Soo;Hong, Kwan-Soo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.2
    • /
    • pp.126-140
    • /
    • 2006
  • Purpose: Contrary to the human study, it has rarely investigated metabolic alterations in the dorsolateral prefrontal cortex (DLPFC) of depressed rats versus age and sex-matched controls using proton magnetic resonance spectroscopy (MRS). Thus, the purpose of this research was to verify the feasibility of metabolic differences between the normal rat and the depression model rat. Materials and Methods: A homogeneous group of 20 SD male rats was used for MRI and in vivo 1H MRS. To induce a depressed status in SD rats, we performed the forced swimming test (FST). Using image-guide, water suppressed in vivo 1H MRS with 4.7 T MRI/MRS system, NAA/Cr and Cho/Cr ratios were mainly measured between depressed rats and normal subjects. Results: In depressed rats, increased Cho/Cr ratio was measured versus control subjects. However, no significant group effect for NAA/Cr was observed between case-control pairs. Discussion and Conclusions: The present 1H MRS study shows significant brain metabolic alterations of dorsolateral prefrontal cortex with experimental depressed status of SD rat induced by FST compared to normal subjects. This result provides new evidence that in vivo 1 H MRS may be a useful modality for detecting localized functional neurochemical markers alterations in left DLPFC in SD rats.

  • PDF

Recurrent Painful Ophthalmoplegic Neuropathy: a Case Report

  • Park, Jae Hwi;Lee, Ho Kyu;Koh, Myeong Ju;Oh, Jung Hwan;Park, Sung Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.2
    • /
    • pp.172-174
    • /
    • 2019
  • Upon review, it is noted that recurrent painful ophthalmoplegic neuropathy (RPON) is a rare neurological syndrome characterized by recurrent unilateral headaches and painful ophthalmoplegia of the ipsilateral oculomotor nerve. As seen on brain MRI, thickening and enhancement of the oculomotor cranial nerve can be observed in these cases. We experienced a case of RPON in an adult patient who showed thickening and enhancement of the oculomotor nerve on gadolinium-enhanced 3D-FLAIR image. The authors report a case of RPON with a review of the literature.

Cerebral Fat Embolism That Was Initially Negative on Diffusion-Weighted Magnetic Resonance Imaging

  • Go, Seung Je;Mun, Yun Su;Bang, Seung Ho;Cha, Yong Han;Sul, Young Hoon;Ye, Jin Bong;Kim, Jae Guk
    • Journal of Trauma and Injury
    • /
    • v.34 no.2
    • /
    • pp.126-129
    • /
    • 2021
  • Fat embolism syndrome is a rare, but serious condition that occurs in patients with fractures of the long bones or who undergo orthopedic surgery. The main clinical features of fat embolism syndrome are an altered mental status, hypoxia, and petechial rash. Cerebral fat embolism is the most severe manifestation of fat embolism syndrome because it can lead to an altered mental status. The diagnosis of cerebral fat embolism is clinical, but brain magnetic resonance image (MRI) is helpful. There is usually an interval until symptoms, such as an altered mental status, develop after trauma. We report a case of cerebral fat embolism in which the patient's mental status deteriorated several hours after trauma and the initial findings were negative on diffusion-weighted MRI.