• Title/Summary/Keyword: Brain Injury

Search Result 934, Processing Time 0.023 seconds

Neuroprotective Effects of Sopung-tang(Shufeng-tang) on Cognition and Motor Function Recovery after Ischemic Brain Injury in Rats (소풍탕이 허혈성 뇌손상 흰쥐의 인지 및 운동기능회복에 미치는 효과)

  • Chu, Min-Gyu;Choi, Jin-Bong;Shin, Mi-Suk;Kim, Sun-Jong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.2
    • /
    • pp.45-60
    • /
    • 2008
  • Objectives : Sopung-tang(Shufeng-tang) is a famous herbal prescription that treated ischemic brain injury. This study was designed to evaluate the effects of Sopung-tang(Shufeng-tang) on congnition and motor function recovery after ischemic brain injury in rats. Methods : Male rats were divided into 4 groups. Those rats caused ischemic brain injury by occlusion of MCA as Longa method. Control group I was per os normal saline for 7 days after ischemic brain injury. Control group II was per os normal saline for 14 days after ischemic brain injury. Experimental group I(Ex I) was taken with Sopung-tang(Shufeng-tang) for 7 days after ischemic brain injury. Experimental group II(Ex II) was taken with Sopung-tang(Shufeng-tang) for 14 days after ischemic brain injury. The author carried out neurological, cognitive motor behavior tests and histological assessment. Neurological motor behavior tests consist of limb placement test, beam-walking test and horizontal wire test. Morris water maze test was used for cognitive motor behavior test. In the histological assessment test, TTC(2,3,5-triphenylteterazolium chloride) staining, Hematoxylin & Eosin staining and immunohistochemical staining were experimented. Results : 1. In neurological motor behavior tests, motor function recovery was significantly increased in the experimental groups as compared with control groups(p<0.05). Especially Ex II was significantly increased as compared with Ex I(p<0.05). 2. In Morris water maze test, congnitive motor function recovery was significantly increased in the experimental groups as compared with control group(p<0.05). Especially Ex II was significantly increased as compared with Ex I(p<0.05). 3. In the immunohistochemical staining for the expression of BDNF in hippocampus, more immune reaction was investigated in the experimental groups as compared with control groups. Especially most immune reaction was experimented in the EX II. Conclusions : According to the above results, Sopung-tang(Shufeng-tang) can treat on the congnition and motor function recovery after ischemic brain injury in rats. And it is effective method in expression of BDNF in hippocampus.

A Case of Traumatic Brain Injury in a Chihuahua Dog: Serial Clinical and Computed Tomographic Findings (치와와에서 발생한 외상적 뇌손상 증례; 연속적인 임상적 및 전산화 단층영상 소견)

  • Lee, Hee-Chun;Won, Jin-Hee;Moon, Jong-Hyun;Jung, Hae-Won;Jung, Dong-In
    • Journal of Veterinary Clinics
    • /
    • v.31 no.4
    • /
    • pp.329-332
    • /
    • 2014
  • A dog (Chihuahua, 2-year-old, intact female) was referred to us because of cluster seizure. She had history of falling from height few days before presentation. Brain computed tomography (CT) results demonstrated fracture line on right temporal bone and hypodense, edematous changes of the adjacent brain parenchyma on right cerebral parenchyma. Based on history, clinical signs, and diagnostic imaging findings, this patient was diagnosed to traumatic brain injury. After diagnosis, the patient was well controlled with anti-inflammatory drug and anti-epileptic drugs. When 30, 480, and 1260 days after initial brain CT examination, we performed serial brain CT rechecks. This case report describes serial clinical and brain CT findings after traumatic brain injury.

Value of Repeat Brain Computed Tomography in Children with Traumatic Brain Injury (소아 두부외상 환자에서의 반복적인 두부 CT 검사의 유용성)

  • Jo, Ho jun;Lim, Yong Su;Kim, Jin Joo;Cho, Jin Seong;Hyun, Sung Youl;Yang, Hyuk Jun;Lee, Gun
    • Journal of Trauma and Injury
    • /
    • v.28 no.3
    • /
    • pp.149-157
    • /
    • 2015
  • Purpose: Traumatic brain injury (TBI) is the most common cause of pediatric trauma patients came to the emergency department. Without guidelines, many of these children underwent repeat brain computed tomography (CT). The purpose of this study was to evaluate the value of repeat brain CT in children with TBI. Methods: We conducted a retrospective study of TBI in children younger than 19 years of age who visited the emergency department (ED) from January 2011 to December 2012. According to the Glasgow Coma Scale (GCS) and Pediatric Glasgow Coma Scale score of the patients, study population divided in three groups. Clinical data collected included age, mechanism of injury, type of TBI, and outcome. Results: A Total 83 children with TBI received repeat brain CT. There were no need for neurosurgical intervention in mild TBI (GCS score 13-15) group who underwent routine repeat CT. 4 patients of mild TBI group, received repeat brain CT due to neurological deterioration, and one patient underwent neurosurgical intervention. Routine repeat CT identified 12 patients with radiographic progression. One patient underwent neurosurgical intervention based on the second brain CT finding, who belonged to the moderate TBI (GCS score 9-12) group. Conclusion: Our study showed that children with mild TBI can be observed without repeat brain CT when there is no evidence of neurologic deterioration. Further study is needed for establish indication for repetition of CT scan in order to avoid unnecessary radiation exposure of children.

  • PDF

Neuropathological Mechanisms of Perinatal Brain Injury (주산기 뇌손상의 신경병리적 기전)

  • Song Ju-Young;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.199-207
    • /
    • 2003
  • This review describes the neurophathological mechanisms that are implicated in perinatal brain injury. Perinatal brain injury is the most important cause of morbidity and mortality to infants, often leading to spastic motor deficits, mental retardation, seizures, and learning impairments. The immature brain injury is usually caused by cerebral hypoxia-ischemia, hemorrhage, or infection. The important form of perinatal brain injury is the hypoxic-ischemic injury and the cerebral hemorrhage. The pathology of hypoxic-ischemic injury include delayed energy failure by mitochondrial dysfunction, neuronal excitotoxicity and vulnerability of white matter in developing brain. The immature brain has the fragile vascular bed of germinal matrix and can not effectively centralize their circulation. Therefore, the cerebral hemorrhage process is considered to be involved in the periventricular leukomalacia.

  • PDF

Bruxism and Oromandibular Dystonia after Brain Injury Treated with Botulinum Toxin A and Occlusal Appliance -A Case Report- (뇌손상 후 발생한 이갈이증과 근육긴장이상에 대한 보튤리눔 독소 A와 교합안정장치를 이용한 치료 증례 -증례 보고-)

  • Kim, Tae-Wan;Baek, Kwang-Woo;Song, Seung-Il
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.10 no.1
    • /
    • pp.13-19
    • /
    • 2010
  • Bruxism is nonfunctional jaw movement that includes clenching, grinding and gnashing of teeth. It usually occurs during sleep, but with functional abnormality of brain, it can be seen during consciousness. Oromandibular dystonia (OMD) can involve the masticatory, lower facial, and tongue muscles and may result in trismus, bruxism, involuntary jaw opening or closure, and involuntary tongue movement. Its prevalence in the general population is 21%, but its incidence after brain injury is unknown, Untreated, bruxism and OMD cause masseter hypertrophy, headache, temporomandibular joint destruction and total dental wear. We report a case of successful treatment of bruxism and OMD after brain injury treated with botulinum toxin A and occlusal appliance. The patient was a 59-year-old man with operation history of frontal craniotomy and removal of malformed vessel secondary to cerebral arteriovenous malfomation. We injected with a total 60 units of botulinum toxin A each masseteric muscle and took impression for occlusal appliance fabrication under general anesthesia. On follow up 2 weeks and 2 months, the patient remained almost free of bruxism. We propose that botulinum toxin A and occlusal appliances be considered as a treatment for bruxism and OMD after brain injury.

The Effect of Proprioceptive and Vestibular Sensory Input on Expression of BDNF after Traumatic Brain Injury in the Rat (고유감각과 전정감각 입력이 외상성 뇌손상 쥐의 BDNF 발현에 미치는 영향)

  • Song, Ju-Min
    • PNF and Movement
    • /
    • v.4 no.1
    • /
    • pp.51-62
    • /
    • 2006
  • Purpose : The purposes of this study were to test the effect of proprioceptive and vestibular sensory input on expression of BDNF after traumatic brain injury in the rat. Subject : The control group was sacrificed at 24 hours after traumatic brain injury. The experimental group I was housed in standard cage for 7 days. The experimental group II was housed in standard cage after intervention to proprioceptive and vestibular sensory(balance training) for 7 days. Method : Traumatic brain injury was induced by weight drop model and after operation they were housed in individual standard cages for 24 hours. After 7th day, rats were sacrificed and cryostat coronal sections were processed individual1y in goat polyclonal anti-BDNF antibody. The morphologic characteristics and the BDNF expression were investigated in injured hemisphere section and contralateral brain section from immunohistochemistry using light microscope. Result : The results of this experiment were as follows: 1. In control group, cell bodies in lateral nucleus of cerebellum, superior vestibular nucleus, purkinje cell layer of cerebellum and pontine nucleus changed morphologically. 2. The expression of BDNF in contralateral hemisphere of group II were revealed. 3. On 7th day after operation, immunohistochemical response of BDNF in lateral nucleus, superior vestibular nucleus, purkinje cell layer and pontine nucleus appeared in group II. Conclusion : The present results revealed that intervention to proprioceptive and vestibular sensory input is enhance expression of BDNF and it is useful in neuronal reorganization improvement after traumatic brain injury.

  • PDF

Radiologic Determination of Corpus Callosum Injury in Patients with Mild Traumatic Brain Injury and Associated Clinical Characteristics

  • Kim, Dong Shin;Choi, Hyuk Jai;Yang, Jin Seo;Cho, Yong Jun;Kang, Suk Hyung
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.2
    • /
    • pp.131-136
    • /
    • 2015
  • Objective : To investigate the incidence of corpus callosum injury (CCI) in patients with mild traumatic brain injury (TBI) using brain MRI. We also performed a review of the clinical characteristics associated with this injury. Methods : A total of 356 patients in the study were diagnosed with TBI, with 94 patients classified as having mild TBI. We included patients with mild TBI for further evaluation if they had normal findings via brain computed tomography (CT) scans and also underwent brain MRI in the acute phase following trauma. As assessed by brain MRI, CCI was defined as a high-signal lesion in T2 sagittal images and a corresponding low-signal lesion as determined by axial gradient echo (GRE) imaging. Based on these criteria, we divided patients into two groups for further analysis : Group I (TBI patients with CCI) and Group II (TBI patients without CCI). Results : A total of 56 patients were enrolled in this study (including 16 patients in Group I and 40 patients in Group II). Analysis of clinical symptoms revealed a significant difference in headache severity between groups. Over 50% of patients in Group I experienced prolonged neurological symptoms including dizziness and gait disturbance and were more common in Group I than Group II (dizziness : 37 and 12% in Groups I and II, respectively; gait disturbance : 12 and 0% in Groups I and II, respectively). Conclusion : The incidence of CCI in patients with mild TBI was approximately 29%. We suggest that brain MRI is a useful method to reveal the cause of persistent symptoms and predict clinical prognosis.

A Case Report of Korean Medicine Treatment of Diffuse Axonal Injury in a Patient with Traumatic Brain Injury (외상성 뇌손상(Traumatic Brain Injury)에서 미만성 축삭손상(Diffuse Axonal Injury)으로 진단된 환자 한방 치험 1례)

  • Jeon, Gyeong-ryung;Cho, Jun-ho;Park, Jin-seo;Kil, Bong-hun;Kim, Dong-won;Jeong, Yun-kyeong;Lee, Yu-jin;Choi, Hyun-jeong
    • The Journal of Internal Korean Medicine
    • /
    • v.40 no.5
    • /
    • pp.804-813
    • /
    • 2019
  • The purpose of this study was to evaluate the effect of Korean medicine in a patient with cognitive impairment, emotional disturbance, and sleep disturbance due to a diffuse axonal injury associated with a traumatic brain injury. The patient was treated with herbal medicine and acupuncture. The treatment effects were evaluated using the Korean version of the Mini-Mental State Examination (MMSE-K) and the Global Detraction Scale (GDS), and by observing clinical symptoms. Improvements in the total scores of MMSE-K and GDS were observed after the Korean medicine treatments; the MMSE-K score increased from 13 to 23 and the GDS score decreased from 5 to 4. The emotional and sleep disturbances were also reduced. These case report findings suggest that Korean medicine may be effective for treating symptoms of diffuse axonal injury in patients with traumatic brain injury.

Effects of Complex formula including Korea Red Ginseng (CKRG) on Brain Ischemia Induced by Occlusion of Middle Cerebral Artery (고려홍삼 복합방이 실험적 뇌경색에 미치는 영향)

  • Oh, Sang-Jin;Park, Il-Hyun;Kim, Sung-Hoon
    • The Journal of Korean Medicine
    • /
    • v.20 no.1 s.37
    • /
    • pp.161-171
    • /
    • 1999
  • This study was performed to investigate the effect of complex formula(CKRG) consisting of Panax ginseng Radix rubra Koreana. Ganoderma, Cinnamomi Cortex, Glycyrrhizae Radix and Laminariae Thallus on brain ischemia and injury such as KCN-induced brain injury, forced brain ischemia, pulmonary thrombosis. The results were summarized as follows: 1. CKRG extracts showed a decrease of the duration of KCN-induced coma and showcd an increase in life expectancy. 2. CKRG extracts showed a decrease of neurologic grade in hind limb but did not affect neurologic grades in fore limb. Also. CKRG extracts showed a significant decrease of brain ischemic area and edema in MCA occlusion, 3. CKRG extracts showed a protective effect on pulmonary thrombosis induced by collagen and epinephrine. These data suggested that CKRG extracts could be applied to the protection of brain ischemia and injury.

  • PDF

Lysophosphatidic Acid Receptor 1 Plays a Pathogenic Role in Permanent Brain Ischemic Stroke by Modulating Neuroinflammatory Responses

  • Supriya Tiwari;Nikita Basnet;Ji Woong Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.319-328
    • /
    • 2024
  • Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in brain injury following a transient brain ischemic stroke. However, its role in permanent brain ischemic stroke remains unknown. To address this, we investigated whether LPA1 could contribute to brain injury of mice challenged by permanent middle cerebral artery occlusion (pMCAO). A selective LPA1 antagonist (AM152) was used as a pharmacological tool for this investigation. When AM152 was given to pMCAO-challenged mice one hour after occlusion, pMCAO-induced brain damage such as brain infarction, functional neurological deficits, apoptosis, and blood-brain barrier disruption was significantly attenuated. Histological analyses demonstrated that AM152 administration attenuated microglial activation and proliferation in injured brain after pMCAO challenge. AM152 administration also attenuated abnormal neuroinflammatory responses by decreasing expression levels of pro-inflammatory cytokines while increasing expression levels of anti-inflammatory cytokines in the injured brain. As underlying effector pathways, NF-κB, MAPKs (ERK1/2, p38, and JNKs), and PI3K/Akt were found to be involved in LPA1-dependent pathogenesis. Collectively, these results demonstrate that LPA1 can contribute to brain injury by permanent ischemic stroke, along with relevant pathogenic events in an injured brain.