• Title/Summary/Keyword: Brain Diseases

Search Result 858, Processing Time 0.026 seconds

A concise review of human brain methylome during aging and neurodegenerative diseases

  • Prasad, Renuka;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.577-588
    • /
    • 2019
  • DNA methylation at CpG sites is an essential epigenetic mark that regulates gene expression during mammalian development and diseases. Methylome refers to the entire set of methylation modifications present in the whole genome. Over the last several years, an increasing number of reports on brain DNA methylome reported the association between aberrant methylation and the abnormalities in the expression of critical genes known to have critical roles during aging and neurodegenerative diseases. Consequently, the role of methylation in understanding neurodegenerative diseases has been under focus. This review outlines the current knowledge of the human brain DNA methylomes during aging and neurodegenerative diseases. We describe the differentially methylated genes from fetal stage to old age and their biological functions. Additionally, we summarize the key aspects and methylated genes identified from brain methylome studies on neurodegenerative diseases. The brain methylome studies could provide a basis for studying the functional aspects of neurodegenerative diseases.

Brain Mapping Using Neuroimaging

  • Tae, Woo-Suk;Kang, Shin-Hyuk;Ham, Byung-Joo;Kim, Byung-Jo;Pyun, Sung-Bom
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.179-183
    • /
    • 2016
  • Mapping brain structural and functional connections through the whole brain is essential for understanding brain mechanisms and the physiological bases of brain diseases. Although region specific structural or functional deficits cause brain diseases, the changes of interregional connections could also be important factors of brain diseases. This review will introduce common neuroimaging modalities, including structural magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging, and other recent neuroimaging analyses methods, such as voxel-based morphometry, cortical thickness analysis, local gyrification index, and shape analysis for structural imaging. Tract-Based Spatial Statistics, TRActs Constrained by UnderLying Anatomy for diffusion MRI, and independent component analysis for fMRI also will also be introduced.

Distinct Features of Brain-Resident Macrophages: Microglia and Non-Parenchymal Brain Macrophages

  • Lee, Eunju;Eo, Jun-Cheol;Lee, Changjun;Yu, Je-Wook
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.281-291
    • /
    • 2021
  • Tissue-resident macrophages play an important role in maintaining tissue homeostasis and innate immune defense against invading microbial pathogens. Brain-resident macrophages can be classified into microglia in the brain parenchyma and non-parenchymal brain macrophages, also known as central nervous system-associated or border-associated macrophages, in the brain-circulation interface. Microglia and non-parenchymal brain macrophages, including meningeal, perivascular, and choroid plexus macrophages, are mostly produced during embryonic development, and maintained their population by self-renewal. Microglia have gained much attention for their dual roles in the maintenance of brain homeostasis and the induction of neuroinflammation. In particular, diverse phenotypes of microglia have been increasingly identified under pathological conditions. Single-cell phenotypic analysis revealed that microglia are highly heterogenous and plastic, thus it is difficult to define the status of microglia as M1/M2 or resting/activated state due to complex nature of microglia. Meanwhile, physiological function of non-parenchymal brain macrophages remain to be fully demonstrated. In this review, we have summarized the origin and signatures of brain-resident macrophages and discussed the unique features of microglia, particularly, their phenotypic polarization, diversity of subtypes, and inflammasome responses related to neurodegenerative diseases.

Factors Influencing the Burden Felt by Main Family Caregivers of Elderly Patients with Brain and Spinal Diseases (뇌.척추질환 노인 환자 주 가족수발자의 부담감에 영향을 미치는 요인)

  • Park, Hee-Kyung;Park, Kyung-Min
    • Research in Community and Public Health Nursing
    • /
    • v.22 no.4
    • /
    • pp.389-398
    • /
    • 2011
  • Purpose: This study of this study was to identify factors influencing the burden of main family caregivers who take care of elderly patients with brain and spinal diseases. Methods: This was conducted as descriptive research and data were collected from 255 main family caregivers who were taking care of elderly patients with brain and spinal diseases from 4 hospitals in Daegu and Gyeongbuk Province. Stepwise-multiple regression was used to identify the influencing factors of burden felt. Results: As the score of burden felt by the main family, economic, social, physical, interdependent and emotional burdens were high in order. Factors influencing burden felt by main family care givers taking care of elderly patients with brain and spinal diseases were changed relation with patient after hospitalization, daily life ability, marital status, education and family caregiver's personality (explanatory power of 24.6%). Family caregivers felt a heavier burden when their relation with the patient was changed negatively or when the patient's activity of daily living was low. Conclusion: Based on these results, we need to develop coping measures and interventional programs for reducing the burden felt by the main family caregivers of elderly patients with brain and spinal diseases.

A Study on the R&D Trend and Patent Analysis of Treatments for Degenerative Brain Diseases (퇴행성 뇌질환 치료제의 연구개발 및 특허동향 분석)

  • Sohn, Eun-Soo;Sohn, Eun-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4411-4417
    • /
    • 2011
  • Degenerative brain diseases including Alzheimer's diseases, Parkinson's diseases increase in frequency with age. They are amongst the most costly and devastating diseases to patients and their families. Therefore developing therapies for degenerative brain diseases is of the highest priority. Recently therapeutics for these diseases have undergone scrutiny by many clinical trials according to the advances of cellular and molecular neurobiology. This review is focused on studies investigating the current therapeutic strategies already undergone different stage of clinical trials and recent R&D trend by nations through patent analysis on treatments for degegerative brain diseases.

Stem cell-derived extracellular vesicle therapy for acute brain insults and neurodegenerative diseases

  • Bang, Oh Young;Kim, Ji-Eun
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.20-29
    • /
    • 2022
  • Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm-1 ㎛) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidences evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer's disease and Parkinson' disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules. The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics.

A Comparison Study of Magnetic Resonance Imaging Findings and Neurological Signs in Canine Brain Diseases

  • Kim, Min-Ju;Song, Joong-Hyun;Hwang, Tae-Sung;Lee, Hee-Chun;Yu, Do-Hyeon;Kang, Byeong-Teck;Jung, Dong-In
    • Journal of Veterinary Clinics
    • /
    • v.35 no.5
    • /
    • pp.178-183
    • /
    • 2018
  • The object of this study was to compare magnetic resonance imaging (MRI) findings and neurological signs in canine brain diseases. Brain diseases can cause severe neurological deficits and may be life-threatening. The antemortem diagnosis of the brain diseases is difficult for the clinician, since definitive diagnosis is based upon histopathological confirmation. Brain diseases are often associated with specific clinical signs, signalment, progression, and location. Accurate lesion localization through neurological examination and MRI findings is helpful for developing a differential diagnosis. A retrospective study was performed to compare the neurological examination of dogs with suspected brain disease to the MRI findings. Based on this study, neurological examination is a reliable way to localize most brain lesions. Postural reaction deficits do not provide sufficient information to localize lesions. Additionally, not all brain lesions present clinical signs and inflammatory lesions may cause no detectable abnormalities on MRI. Therefore, in clinical practice, a combination of neurological examination and MRI findings recommended for accurate brain lesion localization.

Application of SYBR Green real-time PCR assay for the specific detection of Salmonella spp. (Salmonella spp. 특이적인 검출을 위한 SYBR Green real-time PCR 기법 적용)

  • Shin, Seung Won;Cha, Seung Bin;Lee, Won-Jung;Shin, Min-Kyoung;Jung, Myunghwan;Yoo, Anna;Jung, Byeng Yeal;Yoo, Han Sang
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.1
    • /
    • pp.25-28
    • /
    • 2013
  • The aim of this study was to applicate and evaluate a SYBR Green real-time PCR for the specific detection of Salmonella spp. Specificity of the PCR method was confirmed with 48 Salmonella spp. and 5 non-Salmonella strains using invA gene primer. The average threshold cycle ($C_T$) of Salmonella spp. was $11.83{\pm}0.78$ while non-Salmonella spp. was $30.86{\pm}1.19$. Correlation coefficients of standard curves constructed using $C_T$ versus copy number of Salmonella Enteritidis ATCC 13076 showed good linearity ($R^2=0.993$; slope = 3.563). Minimum level of detection with the method was > $10^2$ colony forming units (CFU)/mL. These results suggested that the SYBR Green real-time PCR might be applicable for the specific detection of Salmonella spp. isolates.

Radixin Knockdown by RNA Interference Suppresses Human Glioblastoma Cell Growth in Vitro and in Vivo

  • Qin, Jun-Jie;Wang, Jun-Mei;Du, Jiang;Zeng, Chun;Han, Wu;Li, Zhi-Dong;Xie, Jian;Li, Gui-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9805-9812
    • /
    • 2014
  • Radixin, a member of the ERM (ezrin-radixin-moesin) family, plays important roles in cell motility, invasion and tumor progression. It is expressed in a variety of normal and neoplastic cells, including many types of epithelial and lymphoid examples. However, its function in glioblastomas remains elusive. Thus, in this study, radixin gene expression was first examined in the glioblastoma cells, then suppressed with a lentivirus-mediated short-hairpin RNA (shRNA) method.We found that there were high levels of radixin expression in glioblastoma U251cells. Radixin shRNA caused down-regulation of radixin gene expression and when radixin-silenced cells were implanted into nude mice, tumor growth was significantly inhibited as compared to blank control cells or nonsense shRNA cells. In addition, microvessel density in the tumors was significantly reduced. Thrombospondin-1 (TSP-1) and E-cadherin were up-regulated in radixin- suppressed glioblastoma U251 cells. In contrast, MMP9 was down-regulated. Taken together, our findings suggest that radixin is involved in GBM cell migration and invasion, and implicate TSP-1, E-cadherin and MMP9 as metastasis-inducing factors.

Analysis of Transcriptional Profiles to Discover Biomarker Candidates in Mycobacterium avium subsp. paratuberculosis-Infected Macrophages, RAW 264.7

  • Cha, Seung Bin;Yoo, Anna;Park, Hong Tae;Sung, Kyoung Yong;Shin, Min Kyoung;Yoo, Han Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1167-1175
    • /
    • 2013
  • Paratuberculosis (PTB) or Johne's disease is one of the most serious chronic debilitating diseases of ruminants worldwide that is caused by Mycobacterium avium subsp. paratuberculosis (MAP). MAP is a slow-growing bacterium that has very long latent periods, resulting in difficulties in diagnosing and controlling the disease, especially regarding the diagnosis of fecal shedders of MAP without any clinical signs. Based on this situation, attempts were made to identify biomarkers that show early responses to MAP infection in a macrophage cell line, RAW 264.7. In response to the infection with the bacterium, a lot of genes were turned on and/or off in the cells. Of the altered genes, three different categories were identified based on the time-dependent gene expression patterns. Those genes were considered as possible candidates for biomarkers of MAP infection after confirmation by quantitative RT-PCR analysis. To the best of our knowledge, this is the first attempt at discovering the host transcriptomic biomarkers of PTB, although further investigation will be required to determine whether these biomarker candidates are associated within the natural host.