• Title/Summary/Keyword: Brain, anatomy

Search Result 353, Processing Time 0.081 seconds

Neuroprotective Effects of Agrimoniae Herba against Intrastriatal Hemorrhage in Rats (선학초(仙鶴草)가 선조체내출혈(線條體內出血) 흰쥐의 뇌조직 손상에 미치는 영향)

  • Choi, Young-Seuk;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.25 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • Objects : This study was performed in order to evaluate the effects of Agrimoniae herba (AH) ethanol extract on intrastriatal hemorrhage (ISH). Method : ISH was induced by the stereotaxic intrastriatal injection of bacterial collagenase type IV in Sprague-Dawley rats. AH was orally given once a day for 3 days after ISH. Hematoma volume and percentage edema were examined. Immunohistochemistry was processed for iNOS, c-Fos, MMP-9, and MMP-12 expressions in the brain sections and each immuno-labeling were calculated with image analysis. Results : results are as follows; 1. AH reduced the hematoma volume and percentage edema of the ISH-induced rat brain. 2. AH swollen apoptotic bodies and neurons in the peri-hematoma regions of the ISH-induced rat brain. 3. AH significantly reduced c-Fos, MMP-9 and MMP-12 positive cells in the peri-hematoma regions of the ISH-induced rat brain. 4. AH swollen iNOS expressions in the peri-hematoma regions of the ISH-induced rat brain. Conclusion : These results suggest that AH plays an anti-apoptotic neuroprotective effect through control of ISH, suppression of c-Fos, and down-regulation of MMP-9 and MMP-12 expressions in the brain tissues.

Primary Culture and Characteristics of Blood-Brain Barrier Endothelial Cells from Rat Brain Microvessel (쥐의 뇌 미세혈관 내피세포를 이용한 뇌혈관장벽 내피세포의 배양과 특성)

  • Lee, Hee-Sang;Kim, Seok-Jung;Kim, Dae-Jin;Chung, Yoon-Hee;Kim, Sung-Su;Lee, Won-Bok;Kim, Kyung-Yong
    • Applied Microscopy
    • /
    • v.35 no.4
    • /
    • pp.55-63
    • /
    • 2005
  • The characteristics of primary cultured rat brain microvessel endothelial cells (RBMECs) were studied using microscopy, immunohistochemistry and measuring of transendothelial electrical resistance (TER). The RBMECs formed a monolayer by $5{\sim}6$ days after plating and showed characteristics of whirling appearance. The TER increased until day 5 and decreased then. There was few immunoreaction with anti-GFAP, anti-GalC, anti-neurofilament 160/200 kD antibodies. So the contamination of astrocyte, oligodendrocyte, and neuron. could be ruled out.. Immunoreaction to vWF antigen was widespread througout the cytoplasm as Weibel-Palade granule. Immunoreaction to tight junction proteins, i.e. occludin, ZO-1, and ZO-2 was seen at cell contact. In summary, RBMECs isolated and cultured showed morphological, immunohistochemical and electrical characteristics of blood-brain barrier (BBB). The in vitro BBB model can be used in studying characteristics of in vivo BBB.

Adansonia digitata L. Stem Bark Attenuates Epileptic Seizure, Depression, and Neurodegeneration by Mediating GABA and Glutamate in Pentylenetetrazol-Kindled Rats

  • Adamu Muhammad;Luteino Lorna Hamman;Samaila Musa Chiroma;Martha Orendu Oche Attah;Nathan Isaac Dibal
    • Journal of Pharmacopuncture
    • /
    • v.26 no.4
    • /
    • pp.327-337
    • /
    • 2023
  • Objectives: Epilepsy is a neurological condition characterized by repeated seizures attributable to synchronous neuronal activity in the brain. The study evaluated the effect of acetone extract of Adansonia digitata stem bark (ASBE) on seizure score, cognition, depression, and neurodegeneration as well as the level of Gamma-Aminobutyrate acid (GABA) and glutamate in Pentylenetetrazol-kindled rats. Methods: Thirty-five rats were assigned into five groups (n = 7). Groups 1-2 received normal saline and 35 mg/kg PTZ every other day. Groups 3-4 received 125 mg/kg and 250 mg/kg ASBE orally while group 5 received 5 mg/kg diazepam daily for twenty-six days. Group 3-5 received PTZ every other day, 30 mins after ASBE and diazepam. Results: The results showed that Pentylenetetrazol (PTZ) induces seizure, reduces mobility time in force swim test and decreases the normal cell number in the brain. It also significantly decreases (p < 0.05) catalase, superoxide dismutase and reduced glutathione activities compared to the ASBE pre-treated rats. Pre-treatment with ASBE reportedly decreases seizure activities significantly (p < 0.05) and increases mobility time in the force swim test. ASBE also significantly elevate (p < 0.05) the normal cell number in the hippocampus, temporal lobe, and dentate gyrus. Conclusion: ASBE reduced seizure activity and prevented depression in PTZ-treated rats. It also prevented neurodegeneration by regulating glutamate and GABA levels in the brain as well as preventing lipid peroxidation.

The Analysis of Vitamin C Concentration in Organs of $Gulo^{-/-}$ Mice Upon Vitamin C Withdrawal

  • Kim, Hye-Min;Bae, Se-Yeon;Yu, Yeon-Sil;Kim, Ye-Jin;Kim, Hang-Rae;Hwang, Young-Il;Kang, Jae-Seung;Lee, Wang-Jae
    • IMMUNE NETWORK
    • /
    • v.12 no.1
    • /
    • pp.18-26
    • /
    • 2012
  • Background: Vitamin C is an essential nutrient for maintaining human life. Vitamin C insufficiency in the plasma is closely related with the development of scurvy. However, in vivo kinetics of vitamin C regarding its storage and consumption is still largely unknown. Methods: We used $Gulo^{-/-}$ mice, which cannot synthesize vitamin C like human. Vitamin C level in plasma and organs from $Gulo^{-/-}$ mice was examined, and it compared with the level of wild-type mice during 5 weeks. Results: The significant weight loss of $Gulo^{-/-}$ mice was shown at 3 weeks after vitamin C withdrawal. However, there was no differences between wild-type and vitamin C-supplemented $Gulo^{-/-}$ mice (3.3 g/L in drinking water). The concentration of vitamin C in plasma and organs was significantly decreased at 1 week after vitamin C withdrawal. Vitamin C is preferentially deposited in adrenal gland, lymph node, lung, and brain. There were no significant changes in the numbers and CD4/CD8 ratio of splenocytes in $Gulo^{-/-}$ mice with vitamin C withdrawal for 4 weeks. And the architecture of spleen in $Gulo^{-/-}$ mice was disrupted at 5 weeks after vitamin C withdrawal. Conclusion: The vitamin C level of $Gulo^{-/-}$ mice was considerably decreased from 1 week after vitamin C withdrawal. Vitamin C is preferentially stored in some organs such as brain, adrenal gland and lung.

Role of Actin Filament on Synaptic Vesicle Pooling in Cultured Hippocampal Neuron

  • Lee, Se Jeong;Kim, Hyun-Wook;Na, Ji Eun;Kim, DaSom;Kim, Dai Hyun;Ryu, Jae Ryun;Sun, Woong;Rhyu, Im Joo
    • Applied Microscopy
    • /
    • v.48 no.3
    • /
    • pp.55-61
    • /
    • 2018
  • The synaptic vesicle is a specialized structure in presynaptic terminals that stores various neurotransmitters. The actin filament has been proposed for playing an important role in mobilizing synaptic vesicles. To understand the role of actin filament on synaptic vesicle pooling, we characterized synaptic vesicles and actin filament after treatment of brain-derived neurotrophic factor (BDNF) or Latrunculin A on primary cultured neuron from rat embryo hippocampus. Western blots revealed that BDNF treatment increased the expression of synapsin I protein, but Latrunculin A treatment decreased the synapsin I protein expression. The increased expression of synapsin I after BDNF disappeared by the treatment of Latrunculin A. Three-dimensional (3D) tomography of synapse showed that more synaptic vesicles localized near the active zone and total number of synaptic vesicles increased after treatment of BDNF. But the number of synaptic vesicle was 2.5-fold reduced in presynaptic terminals and the loss of filamentous network was observed after Latrunculin A application. The treatment of Latruculin A after preincubation of BDNF group showed that synaptic vesicle number was similar to that of control group, but filamentous structures were not restored. These data suggest that the actin filament plays a significant role in synaptic vesicles pooling in presynaptic terminals.

Effects of Salviae Miltiorrhizae Radix on Blood-Brain Barrier Impairment of ICH-Induced Rats (단삼(丹蔘)이 뇌조직출혈 흰쥐의 혈액뇌관문 손상에 미치는 영향)

  • Park, Chang-Hoon;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2014
  • Objectives : This study was performed in order to evaluate the effects of Salviae Miltiorrhizae Radix (SMR) water extract against the cerebral hemorrhage and the blood-brain barrier (BBB) impairment in the intracerebral hemorrhage (ICH). Method : ICH was induced by the stereotaxic intrastriatal injection of bacterial collagenase type IV in Sprague-Dawley rats. SMR was orally given three times every 20 hours during 3 days after the ICH induction. Hematoma volume, water content of brain tissue and volume of evans blue leakage were examined. Myeloperoxidase (MPO) positive neutrophils and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) were observed with immunofluorescence labeling and confocal microscope. Results : SMR significantly reduced the hematoma volume of the ICH-induced rat brain. SMR significantly reduced the water content of brain tissue of the ICH-induced rat brain. SMR reduced the percentage of the evans blue leakage around the hematoma on the caudate putamen compared to the ICH group, especially on the cerebral cortex. SMR significantly reduced the volume of the evans blue leakage level in the peri-hematoma regions of the ICH-induced rat brain. SMR significantly reduced MPO positive neutrophils in the peri-hematoma regions of the ICH-induced rat brain. SMR reduced the TNF-${\alpha}$ expression in peri-hematoma regions of the ICH-induced rat brain. TNF-${\alpha}$ immuno-labeled cells were coincided with MPO immuno-labeled neutrophils in peri-hematoma regions of the ICH-induced rat brain. Conclusion : These results suggest that SMR plays a protective role against the blood-brain barrier impairment in the ICH through suppression of inflammation in the rat brain tissues.

A Study of Hox Gene Expression Profile During Murine Liver Regeneration

  • Boyeon-Youn;Kim, Byung-Gyu;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Liver is an organ having an ability to regenerate by itself when it is damaged or removed. Since the research on the liver regeneration so far was regarding on the cellular multiplications not the formation of the shape, we intended to analyze the expression pattern of Hox genes during liver regeneration. RNA samples isolated from liver at the time of partial hepatectomy, 4 hours as well as 3 days later following regeneration were used to perform RT-PCR with Hox-specific degenerate primers. The PCR products were cloned, sequenced and analyzed through BLAST program. Genes belonging to the AbdB type Hox genes (paralogous groups IX-XIII) expressed predominantly during regeneration, while the other group (I-VII), especially Hoxal and bl seemed to be expressed continuously before and after regeneration. These data altogether imply that paralogous group IX and X genes including Hoxa10 and d10 seemed to be regeneration specific genes of liver.

  • PDF

Selective Suppression of a Subset of Bax-dependent Neuronal Death by a Cell Permeable Peptide Inhibitor of Bax, BIP

  • Kim, Soo-Young;Kim, Hyun;Sun, Woong
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.211-217
    • /
    • 2008
  • Bax, a pro-apoptotic member of Bcl-2 family proteins, plays a central role in the mitochondria-dependent apoptosis. Apoptotic signals induce the translocation of Bax from cytosol into the mitochondria, which triggers the release of apoptogenic molecules such as cytochrome C and apoptosis-inducing factor, AIF. Bax-inhibiting peptide(BIP) is a cell permeable peptide comprised of five amino acids designed from the Bax-interaction domain of Ku70. Because BIP inhibits Bax translocation and Bax-mediated release of cytochrome C, BIP suppresses Bax-dependent apoptosis. In this study, we observed that BIP inhibited staurosporine-induced neuronal death in cultured cerebral cortex and cerebellar granule cells, but BIP failed to rescue granule cells from trophic signal deprivation-induced neuronal death, although both staurosporine-induced and trophic signal deprivation-induced neuronal death are dependent on Bax. These findings suggest that the mechanisms of the Bax activation may differ depending on the type of cell death induction, and thus BIP exhibits selective suppression of a subtype of Bax-dependent neuronal death.

Anatomical and Functional Comparison of the Caudate Tail in Primates and the Tail of the Striatum in Rodents: Implications for Sensory Information Processing and Habitual Behavior

  • Keonwoo Lee;Shin-young An;Jun Park;Seoyeon Lee;Hyoung F. Kim
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.461-469
    • /
    • 2023
  • The tail of the striatum (TS) is located at the caudal end in the striatum. Recent studies have advanced our knowledge of the anatomy and function of the TS but also raised questions about the differences between rodent and primate TS. In this review, we compare the anatomy and function of the TS in rodent and primate brains. The primate TS is expanded more caudally during brain development in comparison with the rodent TS. Additionally, five sensory inputs from the cortex and thalamus converge in the rodent TS, but this convergence is not observed in the primate TS. The primate TS, including the caudate tail and putamen tail, primarily receives inputs from the visual areas, implying a specialized function in processing visual inputs for action generation. This anatomical difference leads to further discussion of cellular circuit models to comprehend how the primate brain processes a wider range of complex visual stimuli to produce habitual behavior as compared with the rodent brain. Examining these differences and considering possible neural models may provide better understanding of the anatomy and function of the primate TS.

Variations in the origin of the anterior spinal artery in a Colombian population sample

  • Jorge Eduardo Duque Parra;John Barco Rios;Juan Fernando Velez Garcia
    • Anatomy and Cell Biology
    • /
    • v.55 no.4
    • /
    • pp.520-524
    • /
    • 2022
  • Based on most neuroanatomical descriptions, the anterior spinal artery (ASA) originates from two small vessels of the vertebral arteries, which are anastomosed just before forming the basilar artery. This study aimed to determine and quantify the possible variants of the origin of the ASA and its trajectory in samples of human brain stems. Male brain stems with the superior portion of the spinal cord until myelomera C3 of 23 adult human, and no evident morphological alterations were selected. The brain stems were collected for three years and fixed in a 10% formalin solution at the Anatomy Laboratory of the Universidad de Caldas (Colombia). Five samples (21.7%) had variations in the origin and trajectory of the anterior spinal artery. The variations in the origin of the ASA could generate morphofunctional advantages instead of leading to complications. That is the case when there are two anterior spinal arteries since it would increase tissue perfusion, thus protecting part of the spinal cord from ischemic pathologies. It is essential to consider the variations that may exist in the supply of the anterior region of the spinal cord for clinical and surgical assessments due to variations in its supplied territory.