• Title/Summary/Keyword: Bracket geometries

Search Result 2, Processing Time 0.017 seconds

F. E.-assisted design of the eaves bracket of a cold-formed steel portal frame

  • Lim, J.B.P.;Nethercot, D.A.
    • Steel and Composite Structures
    • /
    • v.2 no.6
    • /
    • pp.411-428
    • /
    • 2002
  • Non-linear large-displacement elasto-plastic finite element analyses are used to propose design recommendations for the eaves bracket of a cold-formed steel portal frame. Owing to the thinness of the sheet steel used for the brackets, such a structural design problem is not trivial as the brackets need to be designed against failure through buckling; without availability of the finite element method, expensive laboratory testing would therefore be required. In this paper, the finite element method is firstly used to predict the plastic moment capacity of the eaves bracket. Parametric studies are then used to propose design recommendations for the eaves bracket against two potential buckling modes of failure: (1) buckling of the stiffened free-edge into one-half sine wave, (2) local plate buckling of the exposed triangular bracket area.The results of full-scale laboratory tests on selected geometries of eaves bracket demonstrate that the proposed design recommendations are conservative. The use of the finite element method in this way exploits modern computational techniques for an otherwise difficult structural design problem.

The six geometries revisited

  • Kang, Austin;Musilli, Marino;Farella, Mauro
    • The korean journal of orthodontics
    • /
    • v.50 no.5
    • /
    • pp.356-359
    • /
    • 2020
  • Forces and moments delivered by a straight wire connecting two orthodontic brackets are statically indeterminate and cannot be estimated using the classical equations of static equilibrium. To identify the mechanics of such two-bracket systems, Burstone and Koenig used the principles of linear beam theory to estimate the resulting force systems. In the original publication, however, it remains unclear how the force systems were calculated because no reference or computational details on the underlying principles have been provided. Using the moment carry-over principle and the relative angulation of the brackets, a formula was derived to calculate the relative moments of the two brackets. Because of the moment equilibrium, the vertical forces that exist as a force-couple on the two brackets can also be calculated. The accuracy of the proposed approach can be validated using previously published empirical data.