• Title/Summary/Keyword: Brachytherapy

Search Result 239, Processing Time 0.022 seconds

Clinical significance of lymph node size in locally advanced cervical cancer treated with concurrent chemoradiotherapy

  • Oh, Jinju;Seol, Ki Ho;Choi, Youn Seok;Lee, Jeong Won;Bae, Jin Young
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.2
    • /
    • pp.115-123
    • /
    • 2019
  • Background: This study aimed to assess the in-field lymph node (LN) failure rate according to LN size and to investigate effect of LN size on the survival outcome of patients with locally advanced cervical carcinoma treated with concurrent chemoradiotherapy (CCRT). Methods: A total of 310 patients with locally advanced cervical carcinoma treated with CCRT were enrolled in retrospective study. LN status was evaluated by magnetic resonance imaging. All patients received conventional external beam irradiation and high-dose rate brachytherapy, and concurrent cisplatin-based chemotherapy. In-field LN failure rate according to LN size was analyzed. Results: The median follow-up period was 83 months (range, 3-201 months). In-field LN failure rate in patients with pelvic LN size more than 10 mm was significantly higher than that in patients with pelvic LN size less than 10 mm (p<0.001). A similar finding was observed in the infield para-aortic LN (PALN) failure rate (p=0.024). The pelvic and PALN size (${\geq}10mm$) was a significant prognostic factor of overall-survival (OS) and disease-free survival rate in univariate and multivariate analyses. The OS rate was significantly different between groups according to LN size (<10 mm vs. ${\geq}10mm$). Conclusion: A LN of less than 10 mm in size in an imaging study is controlled by CCRT. On the other hand, in LN of more than 10 mm in size, the in-field LN failure rate increase and the prognosis deteriorate. Therefore, a more aggressive treatment strategy is needed.

Evaluation of Factors Used in AAPM TG-43 Formalism Using Segmented Sources Integration Method and Monte Carlo Simulation: Implementation of microSelectron HDR Ir-192 Source (미소선원 적분법과 몬테칼로 방법을 이용한 AAPM TG-43 선량계산 인자 평가: microSelectron HDR Ir-192 선원에 대한 적용)

  • Ahn, Woo-Sang;Jang, Won-Woo;Park, Sung-Ho;Jung, Sang-Hoon;Cho, Woon-Kap;Kim, Young-Seok;Ahn, Seung-Do
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.190-197
    • /
    • 2011
  • Currently, the dose distribution calculation used by commercial treatment planning systems (TPSs) for high-dose rate (HDR) brachytherapy is derived from point and line source approximation method recommended by AAPM Task Group 43 (TG-43). However, the study of Monte Carlo (MC) simulation is required in order to assess the accuracy of dose calculation around three-dimensional Ir-192 source. In this study, geometry factor was calculated using segmented sources integration method by dividing microSelectron HDR Ir-192 source into smaller parts. The Monte Carlo code (MCNPX 2.5.0) was used to calculate the dose rate $\dot{D}(r,\theta)$ at a point ($r,\theta$) away from a HDR Ir-192 source in spherical water phantom with 30 cm diameter. Finally, anisotropy function and radial dose function were calculated from obtained results. The obtained geometry factor was compared with that calculated from line source approximation. Similarly, obtained anisotropy function and radial dose function were compared with those derived from MCPT results by Williamson. The geometry factor calculated from segmented sources integration method and line source approximation was within 0.2% for $r{\geq}0.5$ cm and 1.33% for r=0.1 cm, respectively. The relative-root mean square error (R-RMSE) of anisotropy function obtained by this study and Williamson was 2.33% for r=0.25 cm and within 1% for r>0.5 cm, respectively. The R-RMSE of radial dose function was 0.46% at radial distance from 0.1 to 14.0 cm. The geometry factor acquired from segmented sources integration method and line source approximation was in good agreement for $r{\geq}0.1$ cm. However, application of segmented sources integration method seems to be valid, since this method using three-dimensional Ir-192 source provides more realistic geometry factor. The anisotropy function and radial dose function estimated from MCNPX in this study and MCPT by Williamson are in good agreement within uncertainty of Monte Carlo codes except at radial distance of r=0.25 cm. It is expected that Monte Carlo code used in this study could be applied to other sources utilized for brachytherapy.

Independent Verification Program for High-Dose-Rate Brachytherapy Treatment Plans (고선량률 근접치료계획의 정도보증 프로그램)

  • Han Youngyih;Chu Sung Sil;Huh Seung Jae;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.238-244
    • /
    • 2003
  • Purpose: The Planning of High-Dose-Rate (HDR) brachytherapy treatments are becoming individualized and more dependent on the treatment planning system. Therefore, computer software has been developed to perform independent point dose calculations with the integration of an isodose distribution curve display into the patient anatomy images. Meterials and Methods: As primary input data, the program takes patients'planning data including the source dwell positions, dwell times and the doses at reference points, computed by an HDR treatment planning system (TPS). Dosimetric calculations were peformed in a $10\times12\times10\;Cm^3$ grid space using the Interstitial Collaborative Working Group (ICWG) formalism and an anisotropy table for the HDR Iridium-192 source. The computed doses at the reference points were automatically compared with the relevant results of the TPS. The MR and simulation film images were then imported and the isodose distributions on the axial, sagittal and coronal planes intersecting the point selected by a user were superimposed on the imported images and then displayed. The accuracy of the software was tested in three benchmark plans peformed by Gamma-Med 12i TPS (MDS Nordion, Germany). Nine patients'plans generated by Plato (Nucletron Corporation, The Netherlands) were verified by the developed software. Results: The absolute doses computed by the developed software agreed with the commercial TPS results within an accuracy of $2.8\%$ in the benchmark plans. The isodose distribution plots showed excellent agreements with the exception of the tip legion of the source's longitudinal axis where a slight deviation was observed. In clinical plans, the secondary dose calculations had, on average, about a $3.4\%$ deviation from the TPS plans. Conclusion: The accurate validation of complicate treatment plans is possible with the developed software and the qualify of the HDR treatment plan can be improved with the isodose display integrated into the patient anatomy information.

A study on the accuracy of source position in HDR brachytherapy according to the curvature of Universal applicator transfer tube and applicator type (원격 후 장전치료기를 사용한 고선량률 근접치료시 기구의 형태와 선원 전달 도관의 곡률 변화에 따른 선원위치 정확성에 관한 고찰)

  • Shin, Hyeon Kyung;Lee, Sang Kyoo;Kim, Joo Ho;Cho, Jeong Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2015
  • Purpose : The goal of this study was to verify and analyze the source position according to the curvature of the universal applicator and 4 different angle applicators when using RALS(Remote After Loading System). Materials and Methods : An interval of 1 cm and 15 second dwell times in each source position were applied for plan. To verify the accuracy of source position, we narrowed the distance between MultiSource container and GAFCHROMIC$^{(R)}$ EBT3 film by 5 cm, 10 cm, 20 cm so that the universal applicator transfer tube had some curvature. Also 4 applicators(Intrauterine tube: $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, Ovoid tube: $65^{\circ}$) were used in the same condition. The differences between desired and actual source position were measured by using Image J. Results : In case of using 4 different angles of applicator with the straight universal applicator transfer tube, the average error was the lowest for $0^{\circ}$ applicator, greatest for $65^{\circ}$ applicator. However, All average errors were within ${\pm}2mm$ recommended in TG-56. When MultiSource container was moved 5 cm, 10 cm, 20 cm towards the EBT3 film, the average errors were beyond ${\pm}2mm$. The first dwell position was relatively located in accuracy, while the second and third dwells were displaced by an increasing magnitude with increasing curvature of the transfer tube. Furthermore, with increasing the angle of applicators, the error of all other dwell positioning was increased. Conclusion : The results of this study showed that both the curvature of universal applicator transfer tube and the angle of applicators affect the source dwell position. It is recommended that using straight universal applicator transfer tubes is followed in all cases, in order to avoid deviations in the delivered source dwell position. Also, It is advisable to verify the actual dwell position, using video camera quality control tool prior to all treatments.

  • PDF

Multi-element Ultrasound Applicator for the Treatment of Cancer in Uterus and Cervix (자궁암 치료용 다채널 초음파 온열치료기)

  • Lee Rena
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.16-23
    • /
    • 2005
  • The objective of this study was to construct multi-element ultrasound applicators for the treatment of gynecologic cancer with high dose rate brachytherapy. For the treatment of uterus, piezo-ceramic crystal transducer (PZT -5A) with outer diameter of 4 mm, wall thickness of 1.3 mm, and length of 24.5 mm was selected. For the treatment of cervix or vagina, it should be possible to insert the applicator into the vagina. Thus, a cylindrical PZT -8 material with outer diameter of 24.5 mm, wall thickness of 1.3 mm, and length of 15.2 mm was selected. The operating frequencies determined by vector impedance measurement were 3.2 MHz for the PZT 5A cylinder (OD=4 mm) and 1.7 MHz for the PZT -8 cylinder (OD: 24.5 mm). The ratios of generated acoustic output power to applied electric power were 33% and 61% for the tandem type crystal and the cylinder type crystal, respectively. The radiated acoustic pressure fields from both transducers were calculated using a Matlab code and measured in water using hydrophone. There was good agreement between measured and calculated acoustic pressure field distribution. For a tandem type transducer, the calculated acoustic pressure field decreased from 0.023 MPa at 10 mm to 0.010 Mpa at 30 mm, the reduction of 57%. For the cylinder type transducer which will be used for the treatment of vagina showed 78% reduction at 15 mm and 66% at 25 mm as compared to values at 5 mm from the surface. Based on the characteristics of the transducers, this study demonstrated the possibility of using the crystals as a heating source. Finally, a 3-element and 4-element prototype applicators were constructed. The 3-element applicator is 75 mm long and 4 mm thick and will be used for the treatment of uterus. The 4-element applicator is 61 mm long and 24.5 mm thick and will be used for the treatment of vagina. Using these applicators, it is possible to generate enough power to increase temperature to therapeutic level.

  • PDF

Bladder And Rectum Dose Define 3D Treatment Planning for Cervix Cancer Brachtherapy Comparison of Dose-Volume Histograms for Organ Contour and Organ Wall Contour (자궁경부암의 고선량률 근접치료시 장기묘사 방법에 따른 직장과 방광의 선량비교 분석)

  • Kim, Jong-Won;Kim, Dae-Hyun;Choi, Joon-Yong;Won, Yeong-Jin
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.327-333
    • /
    • 2012
  • Purpose: To analyze the correlation between dose volume histograms(DVH) based on organ outer wall contour and organ wall delineation for bladder and rectum, and to compare the doses to these organs with the absorbed doses at the bladder and rectum. Material and methods: Individual CT based brachytherapy treatment planning was performed in 13 patients with cervical cancer as part of a prospective comparative trial. The external contours and the organ walls were delineated for the bladder and rectum in order to compute the corresponding dose volume histograms. The minimum dose in 0.1 $cm^3$, 1 $cm^3$, 2 $cm^3$, 5 $cm^3$, 10 $cm^3$ volumes receiving the highest dose were compared with the absorbed dose at the rectum and bladder reference point. Results: The bladder and rectal doses derived from organ outer wall contour and computed for volumes of 2 $cm^3$, provided a good estimate for the doses computed for the organ wall contour only. This correspondence was no longer true when large volumes were considered. Conclusion: For clinical applications, when volumes smaller than 5 $cm^2$ are considered, the dose-volume histograms computed from external organ contours for the bladder and rectum can be used instead of dose -volume histograms computed for the organ walls only. External organ contours are indeed easier to obtain. The dose at the ICRU rectum reference point provides a good estimate of the rectal dose computed for volumes smaller than 2 $cm^2$ only for a midline position of the rectum. The ICRU bladder reference point provides a good estimate of the dose computed for the bladder wall only in cases of appropriate balloon position.

Optimum Radiotherapy Schedule for Uterine Cervical Cancer based-on the Detailed Information of Dose Fractionation and Radiotherapy Technique (처방선량 및 치료기법별 치료성적 분석 결과에 기반한 자궁경부암 환자의 최적 방사선치료 스케줄)

  • Cho, Jae-Ho;Kim, Hyun-Chang;Suh, Chang-Ok;Lee, Chang-Geol;Keum, Ki-Chang;Cho, Nam-Hoon;Lee, Ik-Jae;Shim, Su-Jung;Suh, Yang-Kwon;Seong, Jinsil;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.143-156
    • /
    • 2005
  • Background: The best dose-fractionation regimen of the definitive radiotherapy for cervix cancer remains to be clearly determined. It seems to be partially attributed to the complexity of the affecting factors and the lack of detailed information on external and intra-cavitary fractionation. To find optimal practice guidelines, our experiences of the combination of external beam radiotherapy (EBRT) and high-dose-rate intracavitary brachytherapy (HDR-ICBT) were reviewed with detailed information of the various treatment parameters obtained from a large cohort of women treated homogeneously at a single institute. Materials and Methods: The subjects were 743 cervical cancer patients (Stage IB 198, IIA 77, IIB 364, IIIA 7, IIIB 89 and IVA 8) treated by radiotherapy alone, between 1990 and 1996. A total external beam radiotherapy (EBRT) dose of $23.4\~59.4$ Gy (Median 45.0) was delivered to the whole pelvis. High-dose-rate intracavitary brachytherapy (HDR-IBT) was also peformed using various fractionation schemes. A Midline block (MLB) was initiated after the delivery of $14.4\~43.2$ Gy (Median 36.0) of EBRT in 495 patients, while In the other 248 patients EBRT could not be used due to slow tumor regression or the huge initial bulk of tumor. The point A, actual bladder & rectal doses were individually assessed in all patients. The biologically effective dose (BED) to the tumor ($\alpha/\beta$=10) and late-responding tissues ($\alpha/\beta$=3) for both EBRT and HDR-ICBT were calculated. The total BED values to point A, the actual bladder and rectal reference points were the summation of the EBRT and HDR-ICBT. In addition to all the details on dose-fractionation, the other factors (i.e. the overall treatment time, physicians preference) that can affect the schedule of the definitive radiotherapy were also thoroughly analyzed. The association between MD-BED $Gy_3$ and the risk of complication was assessed using serial multiple logistic regression models. The associations between R-BED $Gy_3$ and rectal complications and between V-BED $Gy_3$ and bladder complications were assessed using multiple logistic regression models after adjustment for age, stage, tumor size and treatment duration. Serial Coxs proportional hazard regression models were used to estimate the relative risks of recurrence due to MD-BED $Gy_{10}$, and the treatment duration. Results: The overall complication rate for RTOG Grades $1\~4$ toxicities was $33.1\%$. The 5-year actuarial pelvic control rate for ail 743 patients was $83\%$. The midline cumulative BED dose, which is the sum of external midline BED and HDR-ICBT point A BED, ranged from 62.0 to 121.9 $Gy_{10}$ (median 93.0) for tumors and from 93.6 to 187.3 $Gy_3$ (median 137.6) for late responding tissues. The median cumulative values of actual rectal (R-BED $Gy_3$) and bladder Point BED (V-BED $Gy_3$) were 118.7 $Gy_3$ (range $48.8\~265.2$) and 126.1 $Gy_3$ (range: $54.9\~267.5$), respectively. MD-BED $Gy_3$ showed a good correlation with rectal (p=0.003), but not with bladder complications (p=0.095). R-BED $Gy_3$ had a very strong association (p=<0.0001), and was more predictive of rectal complications than A-BED $Gy_3$. B-BED $Gy_3$ also showed significance in the prediction of bladder complications in a trend test (p=0.0298). No statistically significant dose-response relationship for pelvic control was observed. The Sandwich and Continuous techniques, which differ according to when the ICR was inserted during the EBRT and due to the physicians preference, showed no differences in the local control and complication rates; there were also no differences in the 3 vs. 5 Gy fraction size of HDR-ICBT. Conclusion: The main reasons optimal dose-fractionation guidelines are not easily established is due to the absence of a dose-response relationship for tumor control as a result of the high-dose gradient of HDR-ICBT, individual differences In tumor responses to radiation therapy and the complexity of affecting factors. Therefore, in our opinion, there is a necessity for individualized tailored therapy, along with general guidelines, in the definitive radiation treatment for cervix cancer. This study also demonstrated the strong predictive value of actual rectal and bladder reference dosing therefore, vaginal gauze packing might be very Important. To maintain the BED dose to less than the threshold resulting in complication, early midline shielding, the HDR-ICBT total dose and fractional dose reduction should be considered.

The Study of Shielding Effect on Ovoids of Three Different Gynecological Applicator Sets in microSelectron-HDR System (microSelectron-HDR System에서 부인암 강내조사에 쓰이는 세 가지 Applicator Set들의 Ovoids에 대한 차폐효과 연구)

  • Cho, Young-K.;Park, Sung-Y.;Choi, Jin-H.;Kim, Hung-J.;Kim, Woo-C.;Loh, John-J.K.;Kim, Joo-Y.
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.259-266
    • /
    • 1998
  • There are three different types of gynecological applicator sets available in microSelectron-high dose-rate(HDR) System by Nucletron; standard applicator set(SAS), standard shielded applicator set(SSAS), and Fletcher-Williamson applicator set(FWAS). Shielding effect of a SAS without shielding material was compared with that of a SSAS with shielding material made of stainless steel(density ${\varrho}=8,000kg/m^3$) at the top and bottom of each ovoid, and of a FWAS with shielding material made of tungsten alloy(density ${\varrho}=14,000kg/m^3$ at the top and bottom of each ovoid. The shielding effects to the rectum and bladder of these two shielded applicator sets were to be measured at reference points with an ion chamber and specially designed supporting system for applicator ovoids inside of the computerized 3-dimensional water phantom. To determine the middle point of two ovoids the measurement was performed with the reference tip of ion chamber placed at the same level and at the middle point from the two ovoids, while scanning the dose with the ion chamber on each side of ovoids. The doses to the reference points of rectum were measured at 20(Rl), 25(R2), 30(R3), 40(R4), 50(R5), and 60(R6) mm located posteriorly on the vertical line drawn from M5(the middle dwell position of ovoid), and the doses to the bladder were measured at 20(Bl), 30(B2), 40(B3), 50(B4), and 60(B5) mm located anteriorly on the vertical line drawn from M5. The same technique was employed to measure the doses on each reference point of both SSAS and FWAS. The differences of measured rectal doses at 25 mm(R2) and 30 mm(R3) between SAS and SSAS were 8.0 % and 6.0 %: 25.0% and 23.0 % between SAS and FWAS. The differences of measured bladder doses at 20 mm(Bl) and 30 mm(B2) between SAS and SSAS were 8.0 % and 3.0 %: 23.0 % and 17.0 % between SAS and FWAS. The maximum shielding effects to the rectum and bladder of SSAS were 8.0 % and 8.0 %, whereas those of FWAS were 26.0 % and 23.0 %, respectively. These results led to the conclusion that FWAS has much better shielding effect than SSAS does, and when SSAS and FWAS were used for gynecological intracavitary brachytherapy in microSelectron-HDR system, the dose to the rectum and bladder was significantly reduced to optimize the treatment outcome and to lower the complication rates in the rectum and bladder.

  • PDF

Late Rectal Complication in Patients treated with High Dose Rate Brachytherapy for Stage IIB Carcinoma of the Cervix (FIGO병기 IIB 자궁경부암에서 고선량 강내 방사선치료후의 후기 직장 합병증)

  • Chung, Eun-Ji;Kim, Gwi-Eon;Suh, Chang-Ok;Keum, Ki-Chang;Kim, Woo-Cheol
    • Radiation Oncology Journal
    • /
    • v.14 no.1
    • /
    • pp.41-52
    • /
    • 1996
  • Purpose : This paper reports a dosimetric study of 88 patients treated with a combination of external radiotherapy and high dose rate ICR for FIGO stage IIB carcinoma of the cervix. The purpose is to investigate the correlation between the radiation doses to the rectum, external radiation dose to the whole pelvis, ICR reference volume, TDF BED and the incidence of late rectal complications, retrospectively. Materials and Methods : From November 1989 through December 1992, 88 patients with stage IIB cervical carcinoma received radical radiotherapy at Department of Radiation Oncology in Yonsei University Hospital. Radiotherapy consisted of 44-54 Gy(median 49 Gy) external beam irradiation plus high dose rate intracavitary brachytherapy with 5 Gy per fraction twice a week to a total dose of 30 Gy on point A. The maximum dose to the rectum by contrast(r, R) and reference rectal dose by ICRU 38(dr, DR) were calculated. The ICR reference volume was calculated by Gamma Dot 3.11 HDR planning system, retrospectively The time-dose factor(TDF) and the biologically effective dose (BED) were calculated. Results : Twenty seven($30.7\%$) of the 88 patients developed late rectal complications:12 patients($13.6\%$) for grade 1, 12 patients($13.6\%$) for grade 2 and 3 patients($3.4\%$) for grade 3. We found a significant correlation between the external whole pelvis irradiation dose and grade 2, 3 rectal complication. The mean dose to the whole pelvis for the group of patients with grade 2, 3 complication was Higher, $4093.3\pm453.1$ cGy, than that for the patients without complication, $3873.8\pm415.6$ (0.05$7163.0\pm838.5$ cGy, than that for the Patients without rectal complication, $0772.7\pm884.0$ (p<0.05). There was no correlation of the rate of grade 2, 3 rectal complication with the iCR rectal doses(r, dr), ICR reference volume, TDF and BED. Conclusion : This investigation has revealed a significant correlation between the dose calculated at the rectal dose by ICRU 38(DR) or the most anterior rectal dose by contrast(R) dose to the whole pelvis and the incidence of grade 2, 3 late rectal complications in patients with stage IIB cervical cancer undergoing external beam radiotherapy and HOR ICR. Thus these rectal reference points doses and whole pelvis dose appear to be useful Prognostic indicators of late rectal complication in high dose rate ICR treatment in cervical carcinoma.

  • PDF

Results of Definitive Chemoradiotherapy for Unresectable Esophageal Cancer (절제 불가능한 식도암의 근치적 항암화학방사선치료의 성적)

  • Noh, O-Kyu;Je, Hyoung-Uk;Kim, Sung-Bae;Lee, Gin-Hyug;Park, Seung-Il;Lee, Sang-Wook;Song, Si-Yeol;Ahn, Seung-Do;Choi, Eun-Kyung;Kim, Jong-Hoon
    • Radiation Oncology Journal
    • /
    • v.26 no.4
    • /
    • pp.195-203
    • /
    • 2008
  • Purpose: To investigate the treatment outcome and failure patterns after definitive chemoradiation therapy in locally advanced, unresectable esophageal cancer. Materials and Methods: From February 1994 to December 2002, 168 patients with locally advanced unresectable or medically inoperable esophageal cancer were treated by definitive chemoradiation therapy. External beam radiation therapy (EBRT) ($42{\sim}46\;Gy$) was delivered to the region encompassing the primary tumor and involved lymph nodes, while the supraclavicular fossa and celiac area were included in the treatment area as a function of disease location. The administered cone-down radiation dose to the gross tumor went up to $54{\sim}66\;Gy$, while the fraction size of the EBRT was 1.8-2.0 Gy/fraction qd or 1.2 Gy/fraction bid. An optional high dose rate (HDR) intraluminal brachytherapy (BT) boost was also administered (Ir-192, $9{\sim}12\;Gy/3{\sim}4\;fx$). Two cycles of concurrent FP chemotherapy (5-FU $1,000\;mg/m^2$/day, days $2{\sim}6$, $30{\sim}34$, cisplatin $60\;mg/m^2$/day, days 1, 29) were delivered during radiotherapy with the addition of two more cycles. Results: One hundred sixty patients were analyzable for this review [median follow-up time: 10 months (range $1{\sim}149$ months)). The number of patients within AJCC stages I, II, III, and IV was 5 (3.1%), 38 (23.8%), 68 (42.5%), and 49 (30.6%), respectively. A HDR intraluminal BT was performed in 26 patients. The 160 patients had a median EBRT radiation dose of 59.4 Gy (range $44.4{\sim}66$) and a total radiation dose, including BT, of 60 Gy (range $44.4{\sim}72$), while 144 patients received a dose higher than 40 Gy. Despite the treatment, the disease recurrence rate was 101/160 (63.1%). Of these, the patterns of recurrence were local in 20 patients (12.5%), persistent disease and local progression in 61 (38.1%), distant metastasis in 15 (9.4%), and concomitant local and distant failure in 5 (3.1%). The overall survival rate was 31.8% at 2 years and 14.2% at 5 years (median 11.1 months). Disease-free survival was 29.0% at 2 years and 22.7% at 5 years (median 10.4 months). The response to treatment and N-stage were significant factors affecting overall survival. In addition, total radiation dose (${\geq}50\;Gy$ vs. < 50 Gy), BT and fractionation scheme (qd. vs. bid.) were not significant factors for overall survival and disease-free survival. Conclusion: Survival outcome after definitive chemoradiation therapy in unresectable esophageal cancer was comparable to those of other series. The main failure pattern was local recurrence. Survival rate did not improve with increased radiation dose over 50 Gy or the use of brachytherapy or hyperfractionation.