• Title/Summary/Keyword: Brachytherapy

Search Result 240, Processing Time 0.027 seconds

Dosimetry of Brachytherapy Sources: Review of The AAPM TG-43 Formalism

  • Cho, Sang-Hyun
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.141-143
    • /
    • 2002
  • In 1995, the American Association of Physicists in Medicine (AAPM) Task Group 43 published a report dealing with the dosimetry of interstitial brachytherapy sources, generally known as the TG-43 report. Compared to previously adopted formalisms, a formalism proposed in this report provides a more accurate and systematic brachytherapy dose calculation method, especially for Ir-192 and other low energy gamma sources such as 1-125 and Pd-l03. In this lecture, an overview of the TG-43 formalism will be presented, along with the lecturer's experience in determining the TG-43 parameters by the Monte Carlo method and experimental methods such as TLD and radiochromic film.

  • PDF

Brachytherapy for Head and Neck Cancer (두경부암의 근접방사선 치료)

  • Yoo Seong-Yul
    • Korean Journal of Head & Neck Oncology
    • /
    • v.7 no.1
    • /
    • pp.3-9
    • /
    • 1991
  • Brachytherapy is a method of radiotherapy in advantage to achieve better local control with minimum radiation toxicity in comparison with external irradiation because radiation dose is distributed according to the inverse square low of gamma-ray emitted from the implanted sources. The main characteristics of brachytherapy are delivering of higher dose to target volume shortening of total treatment period and sparing of normal tissue. Recent development of iridium ribbons for low dose rate implant provides improvement of technology of brachytherapy in terms of safety and efficiency. High dose rate method. on the other hand, is effective to avoid unnecessary expoure of medical personnel.

  • PDF

The Clinical Application of Radioactive Iridium (Ir-192) Brachytherapy (방사선 이리디움(Ir-192) 근접치료의 임상적 응용)

  • Yoo, Seong-Yul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.3 no.1
    • /
    • pp.11-18
    • /
    • 1989
  • Brachytherapy is known to be a good modality to achieve local control as a boost treatment following limited external irradiation, which may reduce the external beam related complication particularly in head and neck cancer. The authors developed iridium-192 ribbons recently to replace the radium needles in the field of brachytherapy. Total of 48 cases of head and neck and pelvic-perineal cancer patients had been treated with Ir-192 ribbons during last two years from October 1986 to September 1988, and the results were analyzed to assess the applicability of the fabricated sources. The conclusion is as follows; 1. Iridium implant resulted excellent tumor control effect in clinical application. 2. Iridium is superior than radium and cecium in brachytherapy because of easier to use and lesser exposure to the personnel. 3. Afterloading technique is useful to modify dose distribution, to expand treatment site and method, and to develop interstitial hyperthermia.

  • PDF

Design of a New Applicator for High-Dose Rate Vaginal Brachytherapy (고선량율 질강 근접조사를 위한 새로운 적용구의 제작)

  • Shin, Sei One
    • Journal of Yeungnam Medical Science
    • /
    • v.17 no.2
    • /
    • pp.123-128
    • /
    • 2000
  • Purpose: This study was aimed to develop a new vaginal applicator(Shin's Applicator) for 2-channel high-dose rate vaginal brachytherapy to evaluate uniformity of surface dose, and to present 3-dimensional dose distribution of the applicator. Methods: Shin's Applicator was inexpensively constructed using human soft tissue equivalent acrylic bar. We evaluated dose uniformity along the applicator surface using film densitometer and performed vaginal intracavitary brachytherapy after insertion of the applicator using HDR brachytherapy planning software and brachytherapy unit(Ralstron-20B). Results: Shin's Applicator allows improved dose distribution than the existing 1-channel cylinder and achieves diminished urinary bladder and rectal dose by 20%. Conclusions: From the above results, it can be concluded that Shin's Applicator may be an improved form of a vaginal applicator. Furthermore, it can be suggested that this applicator has an advantage, for it prevents vaginal stenosis after radiation therapy and can be used as a disposable vaginal dilator. Further follow up examination with radiological study may be helpful to evaluate the therapeutic efficacy of this applicator.

  • PDF

A comparison of preplan MRI and preplan CT-based prostate volume with intraoperative ultrasound-based prostate volume in real-time permanent brachytherapy

  • Park, Hye-Li;Kim, Ja-Young;Lee, Bo-Mi;Chang, Sei-Kyung;Ko, Seung-Young;Kim, Sung-Jun;Park, Dong-Soo;Shin, Hyun-Soo
    • Radiation Oncology Journal
    • /
    • v.29 no.3
    • /
    • pp.199-205
    • /
    • 2011
  • Purpose: The present study compared the difference between intraoperative transrectal ultrasound (iTRUS)-based prostate volume and preplan computed tomography (CT), preplan magnetic resonance imaging (MRI)-based prostate volume to estimate the number of seeds needed for appropriate dose coverage in permanent brachytherapy for prostate cancer. Materials and Methods: Between March 2007 and March 2011, among 112 patients who underwent permanent brachytherapy with $^{125}I$, 60 image scans of 56 patients who underwent preplan CT (pCT) or preplan MRI (pMRI) within 2 months before brachytherapy were retrospectively reviewed. Twenty-four cases among 30 cases with pCT and 26 cases among 30 cases with pMRI received neoadjuvant hormone therapy (NHT). In 34 cases, NHT started after acquisition of preplan image. The median duration of NHT after preplan image acquisition was 17 and 21 days for cases with pCT and pMRI, respectively. The prostate volume calculated by different modalities was compared. And retrospective planning with iTRUS image was performed to estimate the number of $^{125}I$ seed required to obtain recommended dose distribution according to prostate volume. Results: The mean difference in prostate volume was 9.05 mL between the pCT and iTRUS and 6.84 mL between the pMRI and iTRUS. The prostate volume was roughly overestimated by 1.36 times with pCT and by 1.33 times with pMRI. For 34 cases which received NHT after image acquisition, the prostate volume was roughly overestimated by 1.45 times with pCT and by 1.37 times with pMRI. A statistically significant difference was found between preplan image-based volume and iTRUS-based volume (p<0.001). The median number of wasted seeds is approximately 13, when the pCT or pMRI volume was accepted without modification to assess the required number of seeds for brachytherapy. Conclusion: pCT-based volume and pMRI-based volume tended to overestimate prostate volume in comparison to iTRUS-based volume. To reduce wasted seeds and cost of the brachytherapy, we should take the volume discrepancy into account when we estimate the number of $^{125}I$ seeds for permanent brachytherapy.

Conceptual Source Design and Dosimetric Feasibility Study for Intravascular Treatment: A Proposal for Intensity Modulated Brachytherapy (혈관내 방사선치료를 위한 이론적 선원 설계 및 선량적 관점에서의 적합성 연구: 출력변조를 이용한 근접치료에 대한 제안)

  • Kim Siyong;Han Eunyoung;Palta Jatinder R.;Ha Sung W.
    • Radiation Oncology Journal
    • /
    • v.21 no.2
    • /
    • pp.158-166
    • /
    • 2003
  • Purpose: To propose a conceptual design of a novel source for intensity modulated brachytherapy. Materials and Methods: The source design incorporates both radioactive and shielding materials (stainless steel or tungsten), to provide an asymmetric dose intensity in the azimuthal direction. The intensity modulated intravascular brachytherapy was performed by combining a series of dwell positions and times, distributed along the azimuthal coordinates. Two simple designs for the beta-emitting sources, with similar physical dimensions to a $^{90}Sr/Y$ Novoste Beat-Cath source, were considered in the dosimetric feasibility study. In the first design, the radioactive and materials each occupy half of the cylinder and in the second, the radioactive material occupies only a quater of the cylinder. The radial and azimuthal dose distributions around each source were calculated using the MCNP Monte Carlo code. Results: The preliminary hypothetical simulation and optimization results demonstrated the 87$\%$ difference between the maximum and minimum doses to the lumen wall, due to off-centering of the radiation source, could be reduced to less than 7$\%$ by optimizing the azimuthal dwell positions and times of the partially shielded intravascular brachytherapy sources. Conclusion: The novel brachytherapy source design, and conceptual source delivery system, proposed in this study show promising dosimetric characteristics for the realization of intensity modulated brachytherapy in intravascular treatment. Further development of this concept will center on building a delivery system that can precisely control the angular motion of a radiation source in a small-diameter catheter.

An Accelerated Approach to Dose Distribution Calculation in Inverse Treatment Planning for Brachytherapy (근접 치료에서 역방향 치료 계획의 선량분포 계산 가속화 방법)

  • Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.633-640
    • /
    • 2023
  • With the recent development of static and dynamic modulated brachytherapy methods in brachytherapy, which use radiation shielding to modulate the dose distribution to deliver the dose, the amount of parameters and data required for dose calculation in inverse treatment planning and treatment plan optimization algorithms suitable for new directional beam intensity modulated brachytherapy is increasing. Although intensity-modulated brachytherapy enables accurate dose delivery of radiation, the increased amount of parameters and data increases the elapsed time required for dose calculation. In this study, a GPU-based CUDA-accelerated dose calculation algorithm was constructed to reduce the increase in dose calculation elapsed time. The acceleration of the calculation process was achieved by parallelizing the calculation of the system matrix of the volume of interest and the dose calculation. The developed algorithms were all performed in the same computing environment with an Intel (3.7 GHz, 6-core) CPU and a single NVIDIA GTX 1080ti graphics card, and the dose calculation time was evaluated by measuring only the dose calculation time, excluding the additional time required for loading data from disk and preprocessing operations. The results showed that the accelerated algorithm reduced the dose calculation time by about 30 times compared to the CPU-only calculation. The accelerated dose calculation algorithm can be expected to speed up treatment planning when new treatment plans need to be created to account for daily variations in applicator movement, such as in adaptive radiotherapy, or when dose calculation needs to account for changing parameters, such as in dynamically modulated brachytherapy.

Options in Intracoronary Radiation Therapy (관동맥혈관 내 방사선 근접 치료: 치료 방법의 비교와 선택)

  • Moon, Dae-Hyuk;Oh, Seung-Jun;Lee, Hee-Kyung;Yi, Byong-Yong;Kim, Eun-Hee;Park, Seong-Wook
    • 대한핵의학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.209-221
    • /
    • 1999
  • Coronary restenosis is still regarded as Achilles' Hill of interventional cardiology despite relentless efforts of many investigators. Recent experimental and clinical studies have suggested that both gamma and beta radiation can reduce restenosis after angioplasty. Currently, intracoronary brachytherapy for the prevention of restenosis has become a new evolving treatment modality in interventional cardiology. This report discusses a physical aspect of gamma and beta radiation, initial clinical results and delivery systems used in intracoronary brachytherapy. We shall take a brief overview of methods and their advantages in intra-coronary brachytherapy. Future work should provide further insight for the best way of treating restenosis.

  • PDF