• Title/Summary/Keyword: Brachionus koreanus

Search Result 1, Processing Time 0.015 seconds

Na+/K+-ATPase Alpha Subunit in the Monogonont Rotifer, Brachionus koreanus: Molecular Cloning and Response to Different Salinity

  • Kim, Hokyun;Lim, Bora;Kim, Byung-Do;Lee, Young-Mi
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.97-106
    • /
    • 2016
  • $Na^+/K^+$-ATPase is a membrane protein and plays a key role in osmotic regulation in living organisms. In the present study, a cDNA sequence encoding the $Na^+/K^+$-ATPase alpha subunit from the monogonont rotifer, Brachionus koreanus was cloned by rapid amplification of cDNA ends technique. To investigate the role of this enzyme in osmotic stress, enzymatic activities of $Na^+/K^+$-ATPase were measured after exposure to different salinities for 48 h. The full-length Bk $Na^+/K^+$-ATPase cDNA was 3069 bp-long, encoding a 1022-amino acid polypeptide. Bk $Na^+/K^+$-ATPase possesses eight membrane spanning regions and five conserved domains. Phylogenetic analysis showed that Bk $Na^+/K^+$-ATPase had high identity with those of other species, and was closely clustered with other Brachionus sp. These findings indicate that this protein was conserved both structurally and functionally. B. koreanus $Na^+/K^+$-ATPase activity was stimulated in both hyposaline (6 psu) and hypersaline (32 psu) conditions, suggesting that this protein may play a role in osmoregulation. This study would provide better understanding of the physiology of B. koreanus and this enzyme may be useful as a molecular marker for evaluation of osmotic stress in aquatic environment.