• 제목/요약/키워드: Br${\o}$nsted-type plots

검색결과 25건 처리시간 0.017초

A Kinetic Study on Nucleophilic Substitution Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Z-Substituted-Phenoxides: Effect of Modification of Nonleaving Group from Benzoyl to Phenyloxycarbonyl on Reactivity and Reaction Mechanism

  • Min, Se-Won;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3253-3257
    • /
    • 2012
  • Second-order rate constants for the reactions of phenyl Y-substituted-phenyl carbonates 5a-g with Z-substituted-phenoxides ($k_{Z-PhO^-}$) have been measured spectrophotometrically in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. 4-Nitrophenyl phenyl carbonate (5e) is up to 235 times more reactive than 4-nitrophenyl benzoate (4e). The Br$\o$nsted-type plot for the reactions of 5e with Z-substituted-phenoxides is linear with ${\beta}_{nuc}=0.54$, which is typical for reactions reported previously to proceed through a concerted mechanism. Hammett plots correlated with ${\sigma}^o$ and ${\sigma}^-$ constants for the reactions of 5a-f with 4-chlorophenoxide exhibit highly scattered points. In contrast, the Yukawa-Tsuno plot results in an excellent linear correlation with ${\rho}_Y=1.51$ and r = 0.52, indicating that the leaving-group departure occurs at the rate-determining step (RDS). A stepwise mechanism, in which leaving-group departure occurs at RDS, has been excluded since the incoming 4-$ClPhO^-$ is more basic and a poorer nucleofuge than the leaving Y-substituted-phenoxides. Thus, the reaction has been concluded to proceed through a concerted mechanism. Our study has shown that the modification of the nonleaving group from benzoyl to phenyloxycarbonyl causes a change in the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway) as well as an increase in the reactivity.

The α-Effect in SNAr Reaction of Y-Substituted-Phenoxy-2,4-Dinitrobenzenes with Amines: Reaction Mechanism and Origin of the α-Effect

  • Cho, Hyo-Jin;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2448-2452
    • /
    • 2014
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for $S_NAr$ reactions of Y-substituted-phenoxy-2,4-dinitrobenzenes (1a-1g) with hydrazine and glycylglycine in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. Hydrazine is 14.6-23.4 times more reactive than glycylglycine. The magnitude of the ${\alpha}$-effect increases linearly as the substituent Y becomes a stronger electron-withdrawing group (EWG). The Br${\o}$nsted-type plots for the reactions with hydrazine and glycylglycine are linear with ${\beta}_{lg}=-0.21$ and -0.14, respectively, which is typical for reactions reported previously to proceed through a stepwise mechanism with expulsion of the leaving group occurring after rate-determining step (RDS). The Hammett plots correlated with ${\sigma}^{\circ}$ constants result in much better linear correlations than ${\sigma}^-$ constants, indicating that expulsion of the leaving group is not advanced in the transition state (TS). The reaction of 1a-1g with hydrazine has been proposed to proceed through a five-membered cyclic intermediate ($T_{III}$), which is structurally not possible for the reaction with glycylglycine. Stabilization of the intermediate $T_{III}$ through intramolecular H-bonding interaction has been suggested as an origin of the ${\alpha}$-effect exhibited by hydrazine.

Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Nonleaving Groups on Reactivity and Reaction Mechanism

  • Kim, Min-Young;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1115-1119
    • /
    • 2013
  • A kinetic study is reported for nucleophilic substitution reactions of benzyl 2-pyridyl thionocarbonate (5b) and t-butyl 2-pyridyl thionocarbonate (6b) with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. General-base catalysis, which has often been reported to occur for aminolysis of esters possessing a C=S electrophilic center, is absent for the reactions of 5b and 6b. The Br${\o}$nsted-type plots for the reactions of 5b and 6b are linear with ${\beta}_{nuc}$ = 0.29 and 0.43, respectively, indicating that the reactions of 5b proceed through a stepwise mechanism with formation of a zwitterionic tetrahedral intermediate ($T^{\pm}$) being the rate-determining step while those of 6b proceed through a concerted mechanism. The reactivity of 5b and 6b is similar to that of their oxygen analogues (i.e., benzyl 2-pyridyl carbonate 5a and t-butyl 2-pyridyl carbonate 6a, respectively), indicating that the effect of modification of the electrophilic center from C=O to C=S (i.e., from 5a to 5b and from 6a to 6b) on reactivity is insignificant. In contrast, 6b is much less reactive than 5b, indicating that the replacement of the $PhCH_2$ in 5b by the t-Bu in 6b results in a significant decrease in reactivity as well as a change in the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway). It has been concluded that the contrasting reactivity and reaction mechanism for the reactions of 5b and 6b are not due to the electronic effects of $PhCH_2$ and t-Bu but are caused by the large steric hindrance exerted by the bulky t-Bu in 6b.

Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate in Acetonitrile

  • Bae, Ae-Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1547-1550
    • /
    • 2012
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of benzyl 2-pyridyl carbonate $\mathbf{3}$ and $t$-butyl 2-pyridyl carbonate $\mathbf{3}$ with a series of alicyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. Substrate $\mathbf{4}$ is much less reactive than $\mathbf{3}$ and the steric hindrance exerted by the bulky $t$-Bu group in $\mathbf{4}$ has been attributed to its decreased reactivity. The Br${\o}$nsted-type plots for the reactions of $\mathbf{3}$ and $\mathbf{4}$ are linear with ${\beta}_{nuc}=0.57$ and 0.45, respectively. Thus, the reactions have been concluded to proceed through a concerted mechanism, although the current reactions were expected to proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate $T^{\pm}$. It has been proposed that the rate of leaving-group expulsion is accelerated by the intramolecular H-bonding interaction in $T^{\pm}$ and the "push" provided by the RO group through the resonance interaction. Thus, the enhanced nucleofugality forces the reactions to proceed through a concerted mechanism. The reactivity-selectivity principle (RSP) is not applicable to the current reaction systems, since the reaction of the less reactive $\mathbf{4}$ results in a smaller ${\beta}_{nuc}$ than that of the more reactive $\mathbf{3}$. Steric hindrance exerted by the bulky $t$-Bu group in $\mathbf{4}$ has been suggested to be responsible for the failure of the RSP.

A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism

  • Kang, Ji-Sun;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2971-2975
    • /
    • 2012
  • Second-order rate constants $k_N$ have been measured spectrophotometrically for nucleophilic substitution reactions of t-butyl 4-pyridyl carbonate 8 with a series of alicyclic secondary amines in $H_2O$ at $25.0{\pm}0.1^{\circ}C$. The Br${\emptyset}$nsted-type plot for the reactions of 8 is linear with ${\beta}_{nuc}$ = 0.84. The ${\beta}_{nuc}$ value obtained for the reactions of 8 is much larger than that reported for the corresponding reactions of t-butyl 2-pyridyl carbonate 6 (i.e., ${\beta}_{nuc}$ = 0.44), which was proposed to proceed through a forced concerted mechanism. Thus, the aminolysis of 8 has been concluded to proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate $T^{\pm}$, in which expulsion of the leaving-group from $T^{\pm}$ occurs at the rate-determining step (RDS). In contrast, aminolysis of benzyl 4-pyridyl carbonate 7 has been reported to proceed through two intermediates, $T^{\pm}$ and its deprotonated form $T^-$ on the basis of the fact that the plots of pseudo-first-order rate constant $k_{obsd}$ vs. amine concentration curve upward. The current study has demonstrated convincingly that the nature of the leaving and nonleaving groups governs the reaction mechanism. The contrasting reaction mechanisms have been rationalized in terms of an intramolecular H-bonding interaction, steric acceleration, and steric inhibition.