• 제목/요약/키워드: Boxplot

검색결과 14건 처리시간 0.023초

A Study on Comparison of Response Time using Open API of Daishin Securities Co. and eBestInvestment and Securities Co.

  • Ryu, Gui Yeol
    • International journal of advanced smart convergence
    • /
    • 제11권1호
    • /
    • pp.11-18
    • /
    • 2022
  • Securities and investment services have and use large data. Investors started to invest through their own analysis methods. There are 22 major securities and investment companies in Korea and only 6 companies support open API. Python is effective for requesting and receiving, analyzing text data from open API. Daishin Securities Co. is the only open API that officially supports Python, and eBest Investment & Securities Co. unofficially supports Python. There are two important differences between CYBOS plus of Daishin Securities Co. and xingAPI of eBest Investment & Securities Co. First, we must log in to CYBOS plus to access the server of Daishin Securities Co. And the python program does not require a logon. However, to receive data using xingAPI, users log on in an individual Python program. Second, CYBOS plus receives data in a Request/Reply method, and zingAPI receives data through events. It can be thought that these points will show a difference in response time. Response time is important to users who use open APIs. Data were measured from August 5, 2021, to February 3, 2022. For each measurement, 15 repeated measurements were taken to obtain 420 measurements. To increase the accuracy of the study, both APIs were measured alternately under same conditions. A paired t-test was performed to test the hypothesis that the null hypothesis is there was no difference in means. The p-value is 0.2961, we do not reject null hypothesis. Therefore, we can see that there is no significant difference between means. From the boxplot, we can see that the distribution of the response time of eBest is more spread out than that of Cybos, and the position of the center is slightly lower. CYBOS plus has no restrictions on Python programming, but xingAPI has some limits because it indirectly supports Python programming. For example, there is a limit to receiving more than one current price.

A novel analytical evaluation of the laboratory-measured mechanical properties of lightweight concrete

  • S. Sivakumar;R. Prakash;S. Srividhya;A.S. Vijay Vikram
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.221-229
    • /
    • 2023
  • Urbanization and industrialization have significantly increased the amount of solid waste produced in recent decades, posing considerable disposal problems and environmental burdens. The practice of waste utilization in concrete has gained popularity among construction practitioners and researchers for the efficient use of resources and the transition to the circular economy in construction. This study employed Lytag aggregate, an environmentally friendly pulverized fuel ash-based lightweight aggregate, as a substitute for natural coarse aggregate. At the same time, fly ash, an industrial by-product, was used as a partial substitute for cement. Concrete mix M20 was experimented with using fly ash and Lytag lightweight aggregate. The percentages of fly ash that make up the replacements were 5%, 10%, 15%, 20%, and 25%. The Compressive Strength (CS), Split Tensile Strength (STS), and deflection were discovered at these percentages after 56 days of testing. The concrete cube, cylinder, and beam specimens were examined in the explorations, as mentioned earlier. The results indicate that a 10% substitution of cement with fly ash and a replacement of coarse aggregate with Lytag lightweight aggregate produced concrete that performed well in terms of mechanical properties and deflection. The cementitious composites have varying characteristics as the environment changes. Therefore, understanding their mechanical properties are crucial for safety reasons. CS, STS, and deflection are the essential property of concrete. Machine learning (ML) approaches have been necessary to predict the CS of concrete. The Artificial Fish Swarm Optimization (AFSO), Particle Swarm Optimization (PSO), and Harmony Search (HS) algorithms were investigated for the prediction of outcomes. This work deftly explains the tremendous AFSO technique, which achieves the precise ideal values of the weights in the model to crown the mathematical modeling technique. This has been proved by the minimum, maximum, and sample median, and the first and third quartiles were used as the basis for a boxplot through the standardized method of showing the dataset. It graphically displays the quantitative value distribution of a field. The correlation matrix and confidence interval were represented graphically using the corrupt method.

기후변화 시나리오의 기온상승에 따른 낙동강 남세균 발생 예측을 위한 데이터 기반 모델 시뮬레이션 (Data-driven Model Prediction of Harmful Cyanobacterial Blooms in the Nakdong River in Response to Increased Temperatures Under Climate Change Scenarios)

  • 장가연;조민경;김자연;김상준;박힘찬;박준홍
    • 한국물환경학회지
    • /
    • 제40권3호
    • /
    • pp.121-129
    • /
    • 2024
  • Harmful cyanobacterial blooms (HCBs) are caused by the rapid proliferation of cyanobacteria and are believed to be exacerbated by climate change. However, the extent to which HCBs will be stimulated in the future due to increased temperature remains uncertain. This study aims to predict the future occurrence of cyanobacteria in the Nakdong River, which has the highest incidence of HCBs in South Korea, based on temperature rise scenarios. Representative Concentration Pathways (RCPs) were used as the basis for these scenarios. Data-driven model simulations were conducted, and out of the four machine learning techniques tested (multiple linear regression, support vector regressor, decision tree, and random forest), the random forest model was selected for its relatively high prediction accuracy. The random forest model was used to predict the occurrence of cyanobacteria. The results of boxplot and time-series analyses showed that under the worst-case scenario (RCP8.5 (2100)), where temperature increases significantly, cyanobacterial abundance across all study areas was greatly stimulated. The study also found that the frequencies of HCB occurrences exceeding certain thresholds (100,000 and 1,000,000 cells/mL) increased under both the best-case scenario (RCP2.6 (2050)) and worst-case scenario (RCP8.5 (2100)). These findings suggest that the frequency of HCB occurrences surpassing a certain threshold level can serve as a useful diagnostic indicator of vulnerability to temperature increases caused by climate change. Additionally, this study highlights that water bodies currently susceptible to HCBs are likely to become even more vulnerable with climate change compared to those that are currently less susceptible.

Semi-Variogram을 이용한 소규모 자연휴양림 내기상조건의 정밀 시공간 분포 추정 (Estimating Precise Spatio-Temporal Distribution of Weather Condition Using Semi-Variogram in Small Scale Recreation Forest)

  • 임철희;유동훈;송철호;주용언;이우균;김민선
    • 한국지리정보학회지
    • /
    • 제18권3호
    • /
    • pp.63-75
    • /
    • 2015
  • 최근 각광받고 있는 산림치유를 위해서는 산림 내 기상조건의 시공간분포를 기초로 활동시간 및 공간을 계획할 필요가 있다. 본 연구에서는 국립용현자연휴양림에 기상관측 장비를 설치하여 장기 기상모니터링을 실시하고, 해당 자료를 통해 기상자료의 정밀 시공간 분포를 파악하여 산림휴양 치유 활동을 지원하고자 하였다. 먼저, Semi-Variogram을 추정하는 네 가지 모형을 통계적으로 비교한 결과, 모두 유사한 결과를 보이나, Circular 모형을 활용하는 것이 보다 정확할 수 있을 것으로 판단되어 본 연구에서는 Circular 모형의 결과를 제시하였다. Circular 모형으로 추정된 총 128개의 Semi-Variogram을 통해 계절 및 시간대에 따른 온 습도의 공간분포를 확인할 수 있었다. Partial Sill 값으로 표출한 Boxplot을 통해 보다 확연한 계절 및 시간대별 분포 차이를 확인할 수 있었는데, 그 결과 봄철과 이른 오전 시간대에는 온 습도가 모두 균일한 미기상 공간분포를 보였고, 여름과 이른 오후에는 온 습도 모두 불균일한 결과를 보였다. 봄철과 이른 오전 시간대에는 산림활동 시 공간의 이동에 따른 기상조건 변화가 적으므로, 휴양과 치유에 보다 긍정적일 수 있는 반면 상대적으로 불균일한 여름철과 이른 오후 시간에는 기상조건에 따른 위험이 따를 수 있으므로 별도의 준비가 필요할 것이다. 본 연구는 한 곳의 자연휴양림을 대상으로 사계절 기상조건의 정밀 시공간분포를 추정하여 계절별, 시간대별 세부적인 결과를 제시한 것에 큰 의미가 있다.