• Title/Summary/Keyword: Box2D

Search Result 351, Processing Time 0.028 seconds

Investigation on flutter mechanism of long-span bridges with 2d-3DOF method

  • Yang, Yongxin;Ge, Yaojun;Xiang, Haifan
    • Wind and Structures
    • /
    • v.10 no.5
    • /
    • pp.421-435
    • /
    • 2007
  • A two-dimensional flutter analysis method (2d-3DOF method) was developed to simultaneously investigate the relationship between oscillation parameters and aerodynamic derivatives of three degrees of freedom, and to clarify the coupling effects of different degrees of freedom in flutter instability. With this method, the flutter mechanism of two typical bridge deck sections, box girder section and two-isolated-girder section, were numerically investigated, and both differences and common ground in these two typical flutter phenomena are summarized. Then the flutter stabilization effect and its mechanism for long-span bridges with box girders by using central-slotting were studied by experimental investigation of aerodynamic stability and theoretical analysis of stabilizing mechanism. Possible explanation of new findings in the evaluation trend of critical wind speed through central vent width is finally presented.

UI & UX Effect Using Physics Engine (물리엔진을 이용한 UI 및 UX 효과)

  • Oh, Young-Hyun;Kim, Woo-Saeng
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.493-496
    • /
    • 2011
  • 최근 소비자가 컴퓨터는 물론 각종 전자기기를 구매하는데 있어 UI(User Interface) 및 UX(User eXperience)가 매우 중요한 요소로 자리 매김하고 있다. 터치스크린이나 각종 센서들이 탑재되고 있는 전자기기에서 볼 수 있듯이 HW의 눈부신 발전과 함께 더불어 UI의 다양성도 확대 되고 있다. 본 논문은 이러한 기대에 부응하기 위해 게임에서 많이 사용되는 물리엔진을 UI에 적용시켜 보았다. 여러 물리엔진들 중에 본 연구에 적합한 Box2D를 채택하여 UI에서 응용 할 수 있는 10가지 모듈을 제시하였으며 활용할 수 있는 예도 제안하였다.

Ductile Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder (초고강도 섬유보강 콘크리트 분절형 박스거더의 연성 거동)

  • Jeong, Min-Seon;Park, Sung-Yong;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.282-289
    • /
    • 2017
  • The flexural behavior tests of UHPC segmental Box girder which has 160MPa compressive strength and 15.4m length were carried out. The test variables are area of prestressing wires, volume fraction of steel fibers and longitudinal reinforcing bars in upper flange and web. PS tendons which has 32 strands of 15.2mm diameter in lower flange, 24 strands and 14 strands in lower flange were arranged and volume fraction of 2%, 1.5% and 1.0% is used in box girder concrete. UHPFRC box girder which has 32 strands in lower flange showed the over reinforcement and brittle behavior. UHPFRC box girder which has 24 strands showed the similar peak load as 32 strands girder and ductile behavior as large deflection. UHPFRC box girder which has 14 strands showed half of the peak load of 24 strands box girder and ductile behavior. After the application of the formular for the reinforcement index to the behavior of the UHPFRC box girders, reinforcement index does not determine the characteristic of behavior of UHPFRC box girder exactly. So the index should consider the dimension precisely and modify the reference value corresponding to the 0.005 strain of the prestressing strands.

A STUDY ON COMPARISON OF VARIOUS KINDS OF CLASSII AMALGAM CAVITIES USING FINITE ELEMENT METHOD (유한요소법을 이용한 수종 2급 아말감 와동의 비교연구)

  • Seok, Chang-In;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.432-461
    • /
    • 1995
  • The basic principles in the design of Class II amalgam cavity preparations have been modified but not changed in essence over the last 90 years. The early essential principle was "extension for prevention". Most of the modifications have served to reduce the extent of preparation and, thus, increase the conservation of sound tooth structure. A more recent concept relating to conservative Class II cavity preparations involves elimination of occlusal preparation if no carious lesion exists in this area. To evaluate the ideal ClassII cavity preparation design, if carious lesion exists only in the interproximal area, three cavity design conditions were studied: Rodda's conventional cavity, simple proximal box cavity and proximal box cavity with retention grooves. In this study, MO amalgam cavity was prepared on maxillary first premolar. Three dimensional finite element models were made by serial photographic method. Linear, eight and six-nodal, isoparametric brick elements were used for the three dimensional finite element model. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. Three types model(B option, Gap option and R option model) were developed. B option model was assumed perfect bonding between the restoration and cavty wall. Gap option model(Gap distance: $2{\mu}m$) was assumed the possibility of play at the interface simulated the lack of real bonding between the amalgam and cavity wall (enamel and dentin). R option model was assumed non-connection between the restoration and cavty wall. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as followed. 1. Rodda's cavity form model showed greater amount of displacement with other two models. 2. The stress and strain were increased on the distal marginal ridge and buccopulpal line angle in Rodda's cavity form model. 3. The stress and strain were increased on the central groove and a part of distal marginal ridge in simple proximal box model and proximal box model with retention grooves. 4. With Gap option, Rodda's cavity form model showed the greatest amount of the stress on distal marginal ridge followed by proximal box model with retention grooves and simple proximal box model in descending order. 5. With Gap option, simple proximal box model showed greater amount of stress on the central groove with proximal box model with retention grooves. 6. Retention grooves in the proximal box played the role of supporting the restorations opposing to loads.

  • PDF

Quantification of Diesel in Soils using the Partitioning Tracer Method with Two-dimensional Soil Box (분배성 추적자 기법을 이용한 디젤 오염 토양의 정량적 오염도 평가에 관한 2차원 토조 실험 연구)

  • Rhee, Sung-Su;Lee, Gwang-Hun;Park, Jun-Boum
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.66-72
    • /
    • 2010
  • The partitioning tracer method is to estimate the residual saturation of nonaqueous phase liquid (NAPL) in soils by analyzing tracer's retardation induced by the reversible partitioning of tracer with NAPL. This study is to estimate the residual diesel saturation in soils using the partitioning tracer method. Two-dimensional soil box was used to represent the 2-dimensional flows of groundwater and tracer solution in the saturated aquifer, and the soil box was filled with soil and then saturated with water. The residual diesel saturation was induced in saturated soil, and the partitioning tracer method was applied. The results from batch-partitioning experiment indicated that the diesel-water partitioning was linear with respect to tracer's concentration, and the partition coefficient of tracer between diesel and water was measured by their linearities. The groundwater flow in the saturated aquifer was simulated in the 2-dimensional soil box, and the residual diesel contamination was visually identified. The results from the partitioning tracer method with or without diesel in soils confirmed that 4-methyl-2-pentanol, 2-ethyl-1-butanol and 1-hexanol, can be used as a detecting method for diesel contamination. By the accuracies of estimations for diesel contamination using the partitioning tracer method, 2-ethyl-1- butanol showed the highest accuracy with 83%.

A Study on the Effect of Material Choice on the Lay Mapping of Skirts - Using 4D-Box Design Program - (소재에 따른 스커트의 Lay Mapping 효과에 관한 연구 - 4D-Box 디자인 프로그램을 이용하여 -)

  • Bang, Soo-Ran
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.10
    • /
    • pp.65-77
    • /
    • 2008
  • The purpose of this study is to analyze the correlation between the density, the Count and the width of cross section in 2D function through comparison the difference of simulated fabrics based on the various yarns, and to compare the 3D effect by Lay Mapping of diverse fabrics. The method of research is to weave the eight fabrics composed of cotton, linen, worsted, slender yarn, loop, $m{\acute{e}}lange$, woolen, and yarn twist with Hi-Tex program, and to practice 3D mapping with Hi-Print program. As a mapping object, the flared skirt which is a basic costume item is selected. As a result, the thickness of yarn in CAD system was fixed by the width of cross section rather than Count, especially by the width of core section not including the fluff section. The type of yarn such as cotton yarn, linen yarn, and worsted had effect on the shape of texture, but had few interrelations with dimension. In the case of 3D mapping, the textural characteristic and the dimension were presented precisely, whereas there were several limitations. First, the thickness of tissue has not been represented. Secondly, the effect of texture such as fuzzy look, loop was not expressed on the skirt outline including sideline and hemline. Thirdly, the difference of silhouette was not distinct. The common point in 2D and 3D operations is that the representation of texture is relatively accurate and that is difficult to measure and manifest of thickness, the side. For more professional digitalizing in fashion industry, above all in the domain of 3D, it must be supplement the subdivided and differentiated mapping process according to the texture, deviating from the existing analog-based organization which has to designate the form and silhouette suitable for tissue.

Seepage Behaviors of Enlargement Levee Containing Box Culvert Constructed on Soft Ground (연약지반에 설치된 배수통문을 포함하는 하천 보축제체의 수문 위치에 따른 침투 거동)

  • Yang, Hak-Young;Kim, Young-Muk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.29-41
    • /
    • 2018
  • In the case of the enlargement levee on the soft foundation, the existing levee and the enlargement levee connection can be damaged due to heterogeneous subsidence such as differential settlement at the joint of the box culvert passing through the levee. This study selected the downstream region of the Geum River and then confirmed the influence of the piping possibility on the levee by performing a 2D seepage analysis and analyzing the seepage tendency according to the position of the box culvert's gate. As a result, the flow velocity and the hydraulic gradient are larger in the upper breakage than the lower breakage, and the upper leak was more vulnerable to the piping than the lower leak. If leaks occur in the gate located on the riverside land, the risk of piping is increased when the water level rises and is maintained highly. In the case of the gate located on the inland, it could be predicted that the leakage could damage the stability of levee by increasing the water pressure inside the levee. As a result, if leakage occurs at any position in the box culvert, the pore water pressure is increased or decreased compared with the case when no leakage occurs. Therefore, if the pore water pressure is drastically reduced or increased compared with the normal case, leakage may occur. However, the result of this study is based on a 2D seepage analysis, and it is likely to be different from actual cases. Therefore, more detailed analysis by 3D analysis is recommended.

2D SUB-3D STM Approach for Design and Analysis of 3D Structural Concrete (3D 콘크리트 부재의 해석 및 설계를 위한 2D SUB-3D STM 방법)

  • 윤영묵;김승억;오진우;박정웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.415-420
    • /
    • 1998
  • In this paper, 2D SUB-3D STM approach for analysis and design of 3D structural concrete is presented. In the approach several 2D sub strut-tie models which are representations of compressive and tensile stress flows of each projected plane of 3D structural concrete are utilized in the sketch of a 3D strut-tie model, in the evaluation of effective strengths of compressive concrete struts, and in the verification of geometric compatibility and bearing capacity of critical nodal zones of 3D strut-tie model. To prove the validity and rationality of the suggested approach, the behavior and strength of a prestressed box girder diaphragm tested to failure are evaluated.

  • PDF

Seismic Fragility Analysis for Probabilistic Performance Evaluation of PSC Box Girder Bridges (확률론적 내진성능평가를 위한 PSC Box 거더교의 지진취약도 해석)

  • Song, Jong-Keol;Jin, He-Shou;Lee, Tae-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.119-130
    • /
    • 2009
  • Seismic fragility curves of a structure represent the probability of exceeding the prescribed structural damage state for a given various levels of ground motion intensity such as peak ground acceleration (PGA), spectral acceleration ($S_a$) and spectral displacement ($S_d$). So those are very essential to evaluate the structural seismic performance and seismic risk. The purpose of this paper is to develop seismic fragility curves for PSC box girder bridges. In order to construct numerical fragility curve of bridge structure using nonlinear time history analysis, a set of ground motions corresponding to design spectrum are artificially generated. Assuming a lognormal distribution, the fragility curve is estimated by using the methodology proposed by Shinozuka et al. PGA is simple and generally used parameter in fragility curve as ground motion intensity. However, the PGA has not good relationship with the inelastic structural behavior. So, $S_a$ and $S_d$ with more direct relationship for structural damage are used in fragility analysis as more useful intensity measures instead of PGA. The numerical fragility curves based on nonlinear time history analysis are compared with those obtained from simple method suggested in HAZUS program.

Migration and Retardation Properties of Uranium through a Rock Fracture in a Reducing Environment (환원환경에서 암반 균열을 통한 우라늄 이동 및 지연 특성)

  • Baik, Min-Hoon;Park, Chung-Kyun;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.113-122
    • /
    • 2007
  • In this study, uranium migration experiments have been performed using a natural groundwater and a granite core with natural fractures in a glove-box constructed to simulate an appropriate subsurface environment. Groundwater flow experiments using the non-sorbing anionic tracer Br were carried out to analyze the flow properties of groundwater through the fracture of the granite core. The result of the uranium migration experiment showed a breakthrough curve similar to that of the non-sorting Br. This result may imply that uranium migrates as anionic complexes through the rock fracture since uranium can form carbonate complexes at a given groundwater condition. The distribution coefficient $K_d$ of the uranium between the groundwater and the fracture filling material was obtained as low as 2.7 mL/g from a batch sorption experiment. This result agrees well with the result from the migration experiment, showing a faster elution of the uranium through the rock fracture. In order to analyze retardation properties of the uranium through the rock fracture, the retardation factor $R_d({\sim}16.2)$ was obtained by using the $K_d$ obtained from the batch sorption experiment and it was compared with the $R_d({\sim}14.3)$ obtained by using the result from the uranium migration experiment. The values obtained from the both experiments were very similar to each other. This reveals that the retardation of the uranium is mainly occurred by the fracture filling material when the uranium migrates through the fracture of a granite core.

  • PDF