영화 매출에 대한 연구가 많이 있었지만 공통적인 핵심주제는 영화 매출에 대한 효율적인 예측모델을 훈련하는 것이다. 그러나 과거의 연구에서는 예측 오차를 발생시키는 요인에 대한 분석이 부족하여 이러한 오차를 줄이는 방법에 대한 연구가 이루어지지 않았다. 본 연구에서는 같은 시기에 개봉되고 있는 영화들 간의 영향이 예측 오차에 대한 주요인이라는 가정하에 한 영화가 다른 경쟁영화에서 영향을 받는 정도(경쟁값)를 분석하여 영화매출예측 성능을 향상시키는 것을 목표로 한다. 경쟁값을 예측하기 위하여, 먼저 경쟁값의 극성(양수/음수)에 대해 분류하고 양수의 확률과 음수의 확률을 계산한 다음 회귀분석을 이용하여 양수인 값과 음수인 값을 예측한다. 마지막으로, 확률값과 예측값을 통하여 경쟁값의 기댓값을 계산하여 초기 예측된 매출을 보정한다. 실험 결과에 의하면 제안 방법을 통하여 영화 매출 예측의 정확도가 향상됨을 알 수 있었다.
영화 흥행의 예측이 필요한 시점은 영화 제작 전에 시나리오에 대한 투자를 결정하는 시점이다. 이런 요구에 따라 최근 인공지능 기반 시나리오 분석 서비스가 출시되었으나, 아직 그 알고리즘이 완벽하지는 않다. 본 연구의 목적은 인간의 뇌 작동 기작에 기반 하여, 영화 시나리오 흥행 예측 모형을 제시하는 것이다. 이를 위해 베버의 자극 반응 법칙과 뇌의 자극 기작 이론 등을 적용하여, 디즈니 애니메이션 흥행작의 시각, 청각, 인지적 자극의 타임 스펙트럼 패턴 도출을 시도한 결과는 다음과 같다. 첫째, 흥행작에서 나타난 뇌 자극의 빈도가 비 흥행작보다 약 1.79배가 많았다. 둘째로, 흥행작에서는 지각 자극 코드들이 타임 스펙트럼 상에 고른 분포를 보인 반면에 비흥행작에서는 집중 분포를 보였다. 셋째로, 흥행작에서는 인지적 부담이 큰 인지적 자극은 주로 단독적으로 등장한 반면에, 인지적 부담이 적은 시각적, 청각적 자극은 두 가지가 동시에 등장하였다.
공연예술 기관에서의 공연에 대한 흥행 예측은 공연예술 산업 및 기관에서 매우 흥미롭고도 중요한 문제이다. 이를 위해 출연진, 공연장소, 가격 등 정형화된 데이터를 활용한 전통적인 예측방법론, 데이터마이닝 방법론이 제시되어 왔다. 그런데 관객들은 공연안내 포스터에 의하여 관람 의도가 소구되는 경향이 있음에도 불구하고, 포스터 이미지 분석을 통한 흥행 예측은 거의 시도되지 않았다. 그러나 최근 이미지를 통해 판별하는 CNN 계열의 딥러닝 방법이 개발되면서 포스터 분석의 가능성이 열렸다. 이에 본 연구의 목적은 공연 관련 포스터 이미지를 통해 흥행을 예측할 수 있는 딥러닝 방법을 제안하는 것이다. 이를 위해 KOPIS 공연예술 통합전산망에 공개된 포스터 이미지를 학습데이터로 하여 Pure CNN, VGG-16, Inception-v3, ResNet50 등 딥러닝 알고리즘을 통해 예측을 수행하였다. 또한 공연 관련 정형데이터를 활용한 전통적 회귀분석 방법론과의 앙상블을 시도하였다. 그 결과 흥행 예측 정확도 85%를 상회하는 높은 판별 성과를 보였다. 본 연구는 공연예술 분야에서 이미지 정보를 활용하여 흥행을 예측하는 첫 시도이며 본 연구에서 제안한 방법은 연극 외에 영화, 기관 홍보, 기업 제품 광고 등 포스터 기반의 광고를 하는 영역으로도 적용이 가능할 것이다.
영화 제작에 막대한 비용이 투입되지만 관객수요는 매우 불확실하기 때문에 개선된 수요예측은 수익 개선을 위한 의사결정의 중요 수단으로 활용될 수 있다. 본 연구에서는 영화의 개봉 후 수요를 예측함에 있어 기계학습 기법의 적용 타당성을 예측 성능의 관점에서 검증하였다. 분석결과를 종합하면 다음과 같다. 첫째, 대안변수에 대한 통계적 검증 결과 기본 영화 특성(감독, 배우)과 함께 개봉 후 2주차까지의 스크린수, 상영횟수, 관객수, 주요 배우에 대한 관심도 등 시계열 자료가 수요예측에 유의미한 것을 확인하였다. 둘째, Random Forest Classifier와 SVM(Support Vector Machine) 등 분류 기반 기계학습 기법과 Random Forest Regressor와 k-NN Regressor와 같은 회귀모형 기반 기계학습 기법에 적용하여 예측 성능을 평가한 결과, Random Forest 기법이 우수한 결과를 보였다. 셋째, 누적관객수가 1분위보다 작은 영화에서 회귀모형 기반 기법은 낮은 예측 정확도를 보였으며, 분류기반 기법은 반대로 가장 우수한 결과를 얻었다. 즉, 영화 수요의 분포 특성에 따라서 차별화된 기계학습 기법을 적용하는 것이 필요하다.
Predicting a box office gross in the film industry is an important goal. Many works have analyzed the elements of a film making. Previous studies have suggested several methods for predicting box office such as a model for distinguishing people's reactions by using a sentiment analysis, a study on the period of influence of word-of-mouth effect through SNS. These works discover that a word of mouth (WOM) effect through SNS influences customers' choice of movies. Therefore, this study analyzes correlations between a box office gross and a ratio of people reaction to a certain movie by extracting their feedback on the film from before and after of the film opening. In this work, people's reactions to the movie are categorized into positive, neutral, and negative opinions by employing sentiment analysis. In order to proceed the research analyses in this work, North American tweets are collected between March 2011 and August 2012. There is no correlation for each analysis that has been conducted in this work, hereby rate of tweets before and after opening of movies does not have relationship between a box office gross.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권8호
/
pp.4090-4102
/
2018
After emerging online communications, text mining and sentiment analysis has been frequently applied into analyzing electronic word-of-mouth. This study aims to develop a domain-specific lexicon of sentiment analysis to predict box office success in Korea film market and validate the feasibility of the lexicon. Natural language processing, a machine learning algorithm, and a lexicon-based sentiment classification method are employed. To create a movie domain sentiment lexicon, 233,631 reviews of 147 movies with popularity ratings is collected by a XML crawling package in R program. We accomplished 81.69% accuracy in sentiment classification by the Korean sentiment dictionary including 706 negative words and 617 positive words. The result showed a stronger positive relationship with box office success and consumers' sentiment as well as a significant positive effect in the linear regression for the predicting model. In addition, it reveals emotion in the user-generated content can be a more accurate clue to predict business success.
박스 오피스 예측은 영화 이해관계자들에게 중요하다. 따라서 정확한 박스 오피스 예측과 이에 영향을 미치는 주요 변수를 선별하는 것이 필요하다. 본 논문은 영화의 박스 오피스 예측 정확도 향상을 위해 다변량 시계열 데이터 분류와 주요 변수 선택 방법을 제안한다. 연구 방법으로 한국 영화 일별 데이터를 KOBIS와 NAVER에서 수집하였고, 랜덤 포레스트(Random Forest) 방법으로 주요 변수를 선별하였으며, 딥러닝(Deep Learning)으로 다변량 시계열을 예측하였다. 한국의 스크린 쿼터제(Screen Quota) 기준, 딥러닝을 이용하여 영화 개봉 73일째 흥행 예측 정확도를 주요 변수와 전체 변수로 비교하고 통계적으로 유의한지 검정하였다. 딥러닝 모델은 다층 퍼셉트론(Multi-Layer Perceptron), 완전 합성곱 신경망(Fully Convolutional Neural Networks), 잔차 네트워크(Residual Network)로 실험하였다. 결과적으로 주요 변수를 잔차 네트워크에 사용했을 때 예측 정확도가 약 93%로 가장 높았다.
본 연구는 영화 흥행의 척도로서 총 관객수의 예측을 다루었다. 의사결정나무, MLP 신경망모형, 다항로짓모형, support vector machine과 같은 데이터마이닝 분류 기법들을 사용하여 개봉 전, 개봉 일, 개봉 1주 후, 그리고 개봉 2주 후 시점 별로 예측이 이루어진다. 국적, 등급, 개봉 월, 개봉 계절, 감독, 배우, 배급사, 관객수, 그리고 스크린 수와 같은 영화의 내재적인 속성을 나타내는 변수 뿐만 아니라 포털의 평점과 평가자 수, 블로그 수, 뉴스 수와 같은 온라인 구전 변수들이 예측변수로 사용되었다. 10-중 교차 검증에서 신경망모형의 정확도는 개봉 전 시점에서도 90% 이상의 높은 예측력을 보였다. 또한 최종 온라인 구전 변수의 추정치를 예측변수로 추가함으로서 예측의 정확도가 더 높아짐을 볼 수 있다.
본 연구에서는 콘텐츠 산업 중 음악 분야 2차 산업데이터를 활용하여 딥러닝 기법을 이용한 흥행 예측모델 구축 가능성을 살펴보았다. 본 연구를 통해 구축한 딥러닝 예측 모델은 17개 독립변인 -가수 파워, 가수 영향력, 피처링 가수 파워, 피처링 가수 영향력, 참여 가수 수, 참여 가수의 성별, 작사가 역량, 작곡가 역량, 편곡가 역량, 제작사 역량, 유통사 역량, 앨범의 타이틀 여부, 음원 스트리밍 플랫폼 좋아요 수, 음원 스트리밍 플랫폼 코멘트 수, 사전 홍보 기사 수, 티저 영상 조회 수, 초기 흥행성과를 기반으로 음원 흥행성과 -음원이 차트내 상주하는 기간을 예측하는 구조다. 추가적으로 본 연구가 딥러닝 기법을 콘텐츠 분야에 접목시킨 초기단계 연구임을 고려하여, 콘텐츠 흥행예측 선행연구에서 요인 추출을 위해 활용하는 선형회귀분석을 통해 변인 소거 후 구축한 DNN 예측모델과 예측률 비교를 진행하였다.
2013년 누적인원 2억명을 돌파한 한국의 영화 산업은 매년 괄목할만한 성장을 거듭하여 왔다. 하지만 2015년을 기점으로 한국의 영화 산업은 저성장 시대로 접어들어, 2016년에는 마이너스 성장을 기록하였다. 영화산업을 이루고 있는 각 이해당사자(제작사, 배급사, 극장주 등)들은 개봉 영화에 대한 시장의 반응을 예측하고 탄력적으로 대응하는 전략을 수립해 시장의 이익을 극대화하려고 한다. 이에 본 연구는 개봉 후 역동적으로 변화하는 관람객 수요 변화에 대한 탄력적인 대응을 할 수 있도록 주차 별 관람객 수를 예측하는데 목적을 두고 있다. 분석을 위해 선행연구에서 사용되었던 요인 뿐 아니라 개봉 후 역동적으로 변화하는 영화의 흥행순위, 매출 점유율, 흥행순위 변동 폭 등 선행연구에서 사용되지 않았던 데이터들을 새로운 요인으로 사용하고 Naive Bays, Random Forest, Support Vector Machine, Multi Layer Perception등의 기계학습 기법을 이용하여 개봉 일 후, 개봉 1주 후, 개봉 2주 후 시점에는 차주 누적 관람객 수를 예측하고 개봉 3주 후 시점에는 총 관람객 수를 예측하였다. 새롭게 제시한 변수들을 포함한 모델과 포함하지 않은 모델을 구성하여 실험하였고 비교를 위해 매 예측시점마다 동일한 예측 요인을 사용하여 총 관람객 수도 예측해보았다. 분석결과 동일한 시점에 총 관람객 수를 예측했을 경우 보다 차주 누적 관람객 수를 예측하는 것이 더 높은 정확도를 보였으며, 새롭게 제시한 변수들을 포함한 모델의 정확도가 대부분 높았으며 통계적으로 그 차이가 유의함으로써 정확도에 기여했음을 확인할 수 있었다. 기계학습 기법 중에는 Random Forest가 가장 높은 정확도를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.