• Title/Summary/Keyword: Box-Wilson design

Search Result 20, Processing Time 0.018 seconds

Application of Box Wilson experimental design method for removal of acid red 95 using ultrafiltration membrane

  • Akdemir, Ezgi Oktav
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.309-315
    • /
    • 2018
  • The applicability of the ultrafiltration process for color removal from dye-containing water has been examined in this study. The optimization of major process variables, such as dye concentration, chitosan concentration and transmembrane pressure on permeate flux and color removal efficiency was investigated. To find the most appropriate results for the experiment, the Box-Wilson experimental design method was employed. The results were correlated by a response function and the coefficients were determined by regression analysis. Permeate flux variation and color removal efficiency determined from the response functions were in good agreement with the experimental results. The optimum conditions of chitosan concentration, dye concentration and pressure were 50 mg/l, 50 mg/l and 3 bars, respectively for the highest permeate flux. On the other hand, optimum conditions for color removal efficiency were determined as 50 mg/l of dye concentration, 50 mg/l of chitosan concentration and 1 bar of pressure.

Box-Wilson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete (Box-willson 실험계획법 기반 고강도 자기충전형 콘크리트의 최적설계방법)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.92-103
    • /
    • 2015
  • Box-Wilson experimental design method, known as central composite design, is the design of any information-gathering exercises where variation is present. This method was devised to gather as much data as possible in spite of the low design cost. This method was employed to model the effect of mixing factors on several performances of 60 MPa high strength self compacting concrete and to numerically calculate the optimal mix proportion. The nonlinear relations between factors and responses of HSSCC were approximated in the form of second order polynomial equation. In order to characterize five performances like compressive strength, passing ability, segregation resistance, manufacturing cost and density depending on five factors like water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content, the experiments were made at the total 52 experimental points composed of 32 factorial points, 10 axial points and 10 center points. The study results showed that Box-Wilson experimental design was really effective in designing the experiments and analyzing the relation between factor and response.

A Study on the Optimum Conditions for Preparation of Calcium hydrogenphosphate Dihydrate by Box-Wilson Experimental Design (Box-Wilson 실험계획에 의한 연마용 인산일수소칼슘의 최적 제조조건 추구 및 안정화)

  • Rhee, Gye-Ju;Kwak, Son-Hyuk;Suh, Sung-Su
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.221-232
    • /
    • 1996
  • An abrasive, calcium hydrogen phosphate dihydrate (DCPD), was synthesized in a Box-wilson experimental design by reactions between phosphoric acid and milk of lime, and calcium chloride and sodium phosphate solutions, and stabilized with TSPP and TMP. The optimum conditions for preparation of DCPD from phosphoric acid with milk of lime were such as; reaction temp.; $51.9^{\circ}C$, conc. of lime; 25.9%, conc. of phosphoric acd; 77.9%, drying temp.; $60.2^{\circ}C$ and final pH; 6.46. The physico-chemical and pharmaceutical properties of DCPD were showed as follows: glycerin absorption value(68 ml/100g), whiteness(99.5%), particle size(10.9 nm), pH(7.8), and set test(pass). XRD and SEM of DCPD indicated a monoclinic system crystallographically. $N_2$ adsorption isotherm curve by BET showed non porous type II form. The micromeritic parameters of DCPD showed that surface area was $3.27{\sim}4.6\;cm^{2}/g$ and pore volume, pore area and pore radius were negligible. The rheogram of the toothpaste containing DCPD showed pseudoplastic flow with yield value of 321, and thixotropic behavior forming hysteresis loop. These results meet the requirements as abrasive standard, and sythesized DCPD is expected as a good dental abrasive such as a high quality grade in practice.

  • PDF

Optimal Sythesis Conditions of Magnesium Trisilicate (규산마그네슘의 최적합성조건)

  • Shin, Wha-Woo;Park, In-Hyun
    • YAKHAK HOEJI
    • /
    • v.44 no.6
    • /
    • pp.545-551
    • /
    • 2000
  • Magnesium trisilicate was prepared by reacting Magnesium sulfate solution with Sodium silicate solution in this study. The optimum synthesis conditions base on the yield of the product were established by applying Box-Wilson experimental design. It was found that the optimum synthesis conditions of Magnesium trisilicate were as follows; Reacting temperature : $57{\sim}90^{\circ}C$, Concentration of reactant solution : $19.1{\sim}20.0%$, Molar concentration ratio of two reactants : [Sod.silicate]/[Mg.sulfate] : $1.47{\sim}1.80$, Temperature of washing water : $45{\sim}48^{\circ}C$, Drying temperature : $65{\sim}82^{\circ}C$. The antacidic capacity of the five Magnesium trisilicate samples which shows the maximum antacidic efficacy was tested by pharmacopeia acid consuming capacity test. The five Magnesium trisilicate samples were identified by chemical analysis.

  • PDF

Optimal Synthesis Conditions of Barium Sulfate (황산바륨의 최적합성조건)

  • 신화우;최광식
    • YAKHAK HOEJI
    • /
    • v.46 no.5
    • /
    • pp.364-368
    • /
    • 2002
  • Optimal synthetic conditions of barium sulfate were investigated from the viewpoint of yield and bulkiness according to a randomized complete block design proposed by Box and Wilson. Barium chloride and Sodium sulfate were utilized as reactants in order to prepare barium sulfate in this study. The optimum Synthesis conditions of barium sulfate obtained from this study are as follows; Reactant temperature; 60~75$^{\circ}C$ (viewpoint of yield) and 60~71$^{\circ}C$ (viewpoint of bulkiness). Concentration of two reactants; 12.7~14.4% (viewpoint of yield) and 5~10.5% (viewpoint of bulkiness). Mole ratio of two reactants, [BaCl$_2$]/[Na$_2$SO$_4$]; 1.62~1.96 (viewpoint of yield) and 2.0 (viewpoint of bulkiness). Reacting time; 13~15 minutes (viewpoint of yield) and 12~14 minutes (viewpoint of bulkiness). Drying temperature of product; 86~10$0^{\circ}C$ (viewpoint of yield) and 6$0^{\circ}C$ (viewpoint of bulkiness).

Optimal Synthesis Conditions of Hydrotalcite (II) (히드로탈시트의 최적 합성조건 (II))

  • 신화우;박형민
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.23-28
    • /
    • 2001
  • Hydrotalcite was prepared by reacting with sodium carbonate, magnesium hydroxide and aluminum chloride solutions in this study. The optimum synthesis conditions based on the yield of the product were established by applying Box-Wilson experimental design. It was found that the optimum synthesis conditions of hydrotalcite were as follows ; reacting temperature : 63~9$0^{\circ}C$, concentration of reactant solution : 18.20~19.82%, molar concentration ratio of two reactants [Mg(OH)$_2$] / (AICl$_3$.6$H_2O$) : 6.0, temperature of washing water : 29.0-34.4$^{\circ}C$, drying temperature : 56-77.6$^{\circ}C$. The physicochemical properties of hydrotalcite as medicine were studied by use of chemical analysis, bulk volume test and acid consuming capacity measurements.

  • PDF

Optimal Conditions for Hydrotalcite Synthesis (히드로탈시트의 최적 합성조건)

  • 신화우;박형민;안세민
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.689-695
    • /
    • 1999
  • Hydrotalcite was prepared by reacting with sodium carbonate, magnesium oxide and aluminum sulfate solutions in this study. The optimum synthesis conditions based on the yield of the product were established by applying Box-Wilson experimental design. It was found that the optimum synthesis conditions of hydrotalcite were as follows; reacting temperature : 48~63$^{\circ}C$, concentration of reactant solution : about 20%, molar concentration ratio of two reactants [MgO]/[Al. sulfate] ; 7.35~8.1, temperature of washing water : 34.4~37.4$^{\circ}C$, drying temperature : 74~81.5$^{\circ}C$. The physicochemical properties of hydrotalcite as medicine were studied by use of chemical analysis, D.S.C. thermogram, bulk volume test and acid consuming capacity measurements.

  • PDF

Optimal Synthesis Conditions of Synthetic Aluminum Silicate (합성규산 알루미늄의 최적합성조건)

  • 신화우;서민재;정동훈
    • YAKHAK HOEJI
    • /
    • v.47 no.1
    • /
    • pp.5-9
    • /
    • 2003
  • Synthetic aluminum silicate was prepared by reacting aluminum sulfate solution with Sodium silicate solution in this study. The optimum synthesis conditions based on the yield of the product were established by applying Box-Wilson experimental design. The results were found to be as follows; Reactant temperature : 50∼72$^{\circ}C$, Concentration of two reactants : 10∼17.6%, Mole ratio of two reactants, [Sod. silicate]/[Al. sulfate) : 4.6∼5.0, Temperature of washing water : 25∼4$0^{\circ}C$, and Drying temperature of product : 50∼$65^{\circ}C$. The physical and chemical properties of synthetic aluminum silicate as medicine were investigated by means of chemical analysis, adsorption test and acid consuming capacity measurements.

Synthesis Conditions and Rheological Characteristics of Aluminum Phosphate (인산 알루미늄의 합성조건과 유동학적 특성)

  • 신화우;안세민;정동훈;강태욱;이광표
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.319-325
    • /
    • 1991
  • Aluminum phosphate gel was synthesized by reacting aluminum sulfate as a soluble aluminum salt to tribasic sodium phosphate in this study. The optimal synthesis conditions based on the yield of product were investigated by applying Box-Wilson experimental design. It was found that optimal synthesis conditions were as follows: Reaction temperature; $61~71^{\circ}C$, concentration of two reactants; 12.27~13.83%, concentration ratio of two reactants; [AI$_{2}$(SO$_{4}$)$_{3}$]/[Na$_{3}$PO$_{4}$]= 0.5, reaction time; 10.9~12.1 minutes, drying temperature of product; $60~72^{\circ}C$. Aluminum phosphate gel prepared by the optimal synthesis conditions was suspended with four types of natural and synthetic gums at the concentration of 0.375~1.5wv%. Their Theological properties of aluminum phosphate gels were examined with Haake-Rotovisco RV 20 rotational viscometer. It showed that the higher concentration of suspending agents and lower temperature, the higher viscosity. Aluminum phosphate gel suspended by pectin and agar showed plastic flow with rheopexy, and their gels suspended by sodium alginate and sod. CMC showed plastic flow with thixotropy.

  • PDF

A Study on the Optimum Manufacturing Conditions of Synthetic Aluminum Silicate (합성규산알루미늄의 최적 제조조건에 관한 연구)

  • Rhee, Gye-Ju
    • YAKHAK HOEJI
    • /
    • v.33 no.2
    • /
    • pp.111-117
    • /
    • 1989
  • The optimum reaction conditions for the acid consuming capacity of aluminum silicate synthesized from the reaction of sodium silicate solution and potassium aluminum sulfate solution were investigated by Box-Wilson experimental design, and the micromeritic properties were examined by the means of BET $N_2$ adsorption, Hg penetrometer and methylen blue adsorption. The chemical composition of the samples were analyzed by gravitic method. The results were found to be as follows: optimum reaction temperature $54.7^{\circ}C$, both concentrations of reactant soln 15.7%, reactants molar ratio (Al/Si) 0.5 and drying temperature $65.0^{\circ}C$. The acid consuming capacity of the sample prepared by above optimum conditions was 68 ml and the chemical composition was $Al_2O_3{\cdot}3.6SiO_2{\cdot}3H_2O$. The relationship between acid consuming capacity and micromeritic properties could not found in the range of experiments. Therefore, it is assumed that the acid consuming mechanism of aluminum silicate depends on the neutralization of $Al_2O_3$ and buffer action of $SiO_2$ in sample.

  • PDF