• Title/Summary/Keyword: Box-Jenkins methodology

Search Result 8, Processing Time 0.026 seconds

Prediction of Oak Mushroom Prices Using Box-Jenkins Methodology (Box-Jenkins 모형을 이용한 표고버섯 가격예측)

  • Min, Kyung-Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.778-783
    • /
    • 2006
  • Price prediction is essential to decisions of investment and shipment in oak mushroom cultivation. But predicting the prices of oak mushroom is very difficult because there are so many uncertain factors affecting the demand and the supply in the market. The Box-Jenkins methodology is one of strong tools in price prediction especially for the short-term using historical observations of time series. In this paper, the Box-Jenkins methodology is applied to find a model to forecast future oak mushroom prices. And out-of-sample test was conducted to check out the prediction accuracy. The result shows the high accuracy except for market disturbance period affected by unexpected weather change and reveals the usefulness of the model.

Using Different Method for petroleum Consumption Forecasting, Case Study: Tehran

  • Varahrami, Vida
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2013
  • Purpose: Forecasting of petroleum consumption is useful in planning and management of petroleum production and control of air pollution. Research Design, Data and Methodology: ARMA models, sometimes called Box-Jenkins models after the iterative Box-Jenkins methodology usually used to estimate them, are typically applied to auto correlated time series data. Results: Petroleum consumption modeling plays a role key in big urban air pollution planning and management. In this study three models as, MLFF, MLFF with GARCH (1,1) and ARMA(1,1), have been investigated to model the petroleum consumption forecasts. Certain standard statistical parameters were used to evaluate the performance of the models developed in this study. Based upon the results obtained in this study and the consequent comparative analysis, it has been found that the MLFF with GARCH (1,1) have better forecasting results.. Conclusions: Survey of data reveals that deposit of government policies in recent yeas, petroleum consumption rises in Tehran and unfortunately more petroleum use causes to air pollution and bad environmental problems.

A New Algorithm for Automated Modeling of Seasonal Time Series Using Box-Jenkins Techniques

  • Song, Qiang;Esogbue, Augustine O.
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.9-22
    • /
    • 2008
  • As an extension of a previous work by the authors (Song and Esogbue, 2006), a new algorithm for automated modeling of nonstationary seasonal time series is presented in this paper. Issues relative to the methodology for building automatically seasonal time series models and periodic time series models are addressed. This is achieved by inspecting the trend, estimating the seasonality, determining the orders of the model, and estimating the parameters. As in our previous work, the major instruments used in the model identification process are correlograms of the modeling errors while the least square method is used for parameter estimation. We provide numerical illustrations of the performance of the new algorithms with respect to building both seasonal time series and periodic time series models. Additionally, we consider forecasting and exercise the models on some sample time series problems found in the literature as well as real life problems drawn from the retail industry. In each instance, the models are built automatically avoiding the necessity of any human intervention.

Wind Attribute Time Series Modeling & Forecasting in IRAN

  • Ghorbani, Fahimeh;Raissi, Sadigh;Rafei, Meysam
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.3 no.3
    • /
    • pp.14-26
    • /
    • 2015
  • A wind speed forecast is a crucial and sophisticated task in a wind farm for planning turbines and corresponds to an estimate of the expected production of one or more wind turbines in the near future. By production is often meant available power for wind farm considered (with units KW or MW depending on both the wind speed and direction. Such forecasts can also be expressed in terms of energy, by integrating power production over each time interval. In this study, we technically focused on mathematical modeling of wind speed and direction forecast based on locally data set gathered from Aghdasiyeh station in Tehran. The methodology is set on using most common techniques derived from literature review. Hence we applied the most sophisticated forecasting methods to embed seasonality, trend, and irregular pattern for wind speed as an angular variables. Through this research, we carried out the most common techniques such as the Box and Jenkins family, VARMA, the component method, the Weibull function and the Fourier series. Finally, the best fit for each forecasting method validated statistically based on white noise properties and the final comparisons using residual standard errors and mean absolute deviation from real data.

A study of short-term load forecasting in consideration of the weather conditions (대기상태를 고려한 단기부하예측에 관한 연구)

  • 김준현;황갑주
    • 전기의세계
    • /
    • v.31 no.5
    • /
    • pp.368-374
    • /
    • 1982
  • This paper describes a combined algorithm for short-term-load forecating. One of the specific features of this algorithm is that the base, weather sensitive and residual components are predicted respectively. The base load is represented by the exponential smoothing approach and residual load is represented by the Box-Jenkins methodology. The weather sensitive load models are developed according to the information of temperature and discomfort index. This method was applied to Korea Electric Company and results for test periods up to three years are given.

  • PDF

A Future Economic Model: A Study of the Impact of Food Processing Industry, Manufacturers and Distributors in a Thai Context

  • Maliwan SARAPAB;Duangrat TANDAMRONG
    • Journal of Distribution Science
    • /
    • v.21 no.7
    • /
    • pp.65-71
    • /
    • 2023
  • Purpose: This study attempted to analyze the impacts of the backward linkage and output multipliers, and investigate the price fluctuation and the price forecast amongst the manufacturing sectors associated with food processing industrial output of Thailand. Research design, data and methodology: The Thailand Input-Output table with a size of 180 x 180 sectors from 2005, 2010, and 2015 was utilized while the secondary data of the time series from January 2002 to December 2021 were processed via a multiplicative model and Box-Jenkins model. Results: The backward linkage analysis indicates that canning and preserving of the meat sector majorly utilized the factors of production from the slaughtering sector; canning and preservation of fish and other seafoods sector largely used those factors from the ocean and coastal fishing sector; and the sugar sector used those of the sugarcane sector. Notably, the output multiplier analysis indicated that output multipliers of those 3 manufacturing sectors were highly increased; meanwhile the price fluctuation continually existed in all forms. Besides, the price forecast suggested that prices of chicken and sugarcane tended to be higher; whereas, the price of shrimp was unstable. Conclusions: Food processing industry contains the favorable components to be one of the industries of the future of Thailand.

Technology Forecasting using Bayesian Discrete Model (베이지안 이산모형을 이용한 기술예측)

  • Jun, Sunghae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.179-186
    • /
    • 2017
  • Technology forecasting is predict future trend and state of technology by analyzing the results so far of developing technology. In general, a patent has novel information about the result of developed technology, because the exclusive right of technology included in patent is protected for a time period by patent law. So many studies on the technology forecasting using patent data analysis has been performed. The patent keyword data widely used in patent analysis consist of occurred frequency of the keyword. In most previous researches, the continuous data analyses such as regression or Box-Jenkins Models were applied to the patent keyword data. But, we have to apply the analytical methods of discrete data for patent keyword analysis because the keyword data is discrete. To solve this problem, we propose a patent analysis methodology using Bayesian Poisson discrete model. To verify the performance of our research, we carry out a case study by analyzing the patent documents applied by Apple until now.

Fluctuations and Time Series Forecasting of Sea Surface Temperature at Yeosu Coast in Korea (여수연안 표면수온의 변동 특성과 시계열적 예측)

  • Seong, Ki-Tack;Choi, Yang-Ho;Koo, Jun Ho;Jeon, Sang-Back
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.122-130
    • /
    • 2014
  • Seasonal variations and long term linear trends of SST (Sea Surface Temperature) at Yeosu Coast ($127^{\circ}37.73^{\prime}E$, $34^{\circ}37.60^{\prime}N$) in Korea were studied performing the harmonic analysis and the regression analysis of the monthly mean SST data of 46 years (1965-2010) collected by the Fisheries Research and Development Institute in Korea. The mean SST and the amplitude of annual SST variation show $15.6^{\circ}C$ and $9.0^{\circ}C$ respectively. The phase of annual SST variation is $236^{\circ}$. The maximum SST at Yeosu Coast occurs around August 26. Climatic changes in annual mean SST have had significant increasing tendency with increase rate $0.0305^{\circ}C/Year$. The warming trend in recent 30 years (1981-2010) is more pronounced than that in the last 30 years (1966-1995) and the increasing tendency of winter SST dominates that of the annual SST. The time series model that could be used to forecast the SST on a monthly basis was developed applying Box-Jenkins methodology. $ARIMA(1,0,0)(2,1,0)_{12}$ was suggested for forecasting the monthly mean SST at Yeosu Coast in Korea. Mean absolute percentage error to measure the accuracy of forecasted values was 8.3%.